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METHODS AND APPARATUS FOR
MULTTPLICATION IN A GALOIS FIELD GF
(2", ENCODERS AND DECODERS USING
SAME

FIELD OF THE INVENTION

The invention pertains to methods and apparatus for
performing multiplication in the Galois field, and encoders
and decoders that use such methods and apparatus.

BACKGROUND OF THE INVENTION

Arithmetic operations in the Galois field GF(2™) have
numerous applications in coding theory, computer algebra,
communications systems, and cryptography. Most of these
applications require fast methods or simple, inexpensive
integrated circuits for performing arithmetic operations such
as addition, multiplication, squaring, and exponentiation.
The relative speed of a method is referred to herein as an
method’s time-complexity; the relative circuit area
(typically semiconductor wafer area) required to implement
the method in an integrated circuit is referred to as a
method’s area-complexity.

The Galois field GF(2™) is a set containing a finite number
(2™)of elements, wherein m is a positive integer. The ele-
ments of the Galois field GF(2™) can be represented in many
ways and a representation is said to be isomorphic with
respect to another representation if the two representations
have the same number of elements and the properties of the
elements are the same, but the elements occur in a different
order. Even if two representations are isomorphic, the time-
and area-complexity of arithmetic operations can differ.

Prior-art methods for multiplication in GF(2™) include the
Massey-Omura method disclosed in U.S. Pat. No. 4,587,
627. The Massey-Omura method uses a so-called normal
basis representation of the elements of GF(2™). Other meth-
ods for multiplication using a so-called canonical basis
representation have been described in, for example,
Mastrovito, “VLSI Architectures for Multiplication over the
Finite Field GF(2™),” Lecture Notes in Computer Science,
vol. 357, pp. 297-309 (1988); Itoh and Tsujii, “Structure of
Paralle] Multipliers for a Class of Finite Fields GF(2™),”
Information and Computation, vol. 83, pp. 21-40, 1989; and
Kog¢ and Sunar, “Low-Complexity Bit-Parallel Canonical
and Normal Basis Multipliers for a Class of Finite Fields,”
IEEFE Trans. on Computers, vol. 47, pp. 353-356, March,
1998. These canonical basis methods are generally consid-
ered superior to the Massey-Omura method because of their
superior time-complexity or area-complexity. Efficient
methods using the normal basis for special classes of Galois
fields have been disclosed by, e.g., Hasan et al., “A Modified
Massey-Omura Parallel Multiplier for a Class of Finite
Fields,” IEEE Trans. on Computers, vol. 42, pp. 1278-1280,
October, 1993. Unfortunately, these methods work only for
Galois fields having a particular type of basis (a so-called
type I optimal normal basis). The Massey-Omura method
appears to be the only method useful with optimal normal
bases of both type I and type II. Unfortunately, the area-
complexity of the Massey-Omura method is about twice that
of these more specialized methods. For example, in an
integrated circuit implementation, the Massey-Omura
method requires 2(m>-m) XOR gates while the more spe-
cialized multipliers of Ko¢ and Sunar, and Hasan et al.
require only m*-1 XOR gates and therefore require less
wafer area to implement in an integrated circuit.

Because many practical applications of Galois fields
require rapid computations and simple, inexpensive hard-
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2

ware or software, improved methods and apparatus for
Galois field arithmetic are needed. For example, digital data
blocks of length m can be conveniently treated as elements
of the finite Galois field GF(2™) and methods and apparatus
for such digital data blocks have many practical applica-
tions.

SUMMARY OF THE INVENTION

Multi plication methods and apparatus for manipulating
digital data blocks represented as elements of the finite
Galois field GF(2™) are provided. In a representative
method, a product C=A'B of elements A, B of GF(2™) is
obtained by converting the elements A, B from an optimal
normal basis representation to a representation in a modified
basis N by rearrangement of coefficients a, b. of A, B,
respectively. The elements A, B both corresponc{ to respec-
tive digital data blocks, represented in GF(2™). The product
Cis obtained in the modified basis and can be converted into
the optimal normal basis or can be left in the modified basis.
For example, if additional multiplications are to be
performed, the product C is generally left in the modified
basis, whereas if no additional multiplications are needed,
the product C can be transformed into the optimal normal
basis using a rearrangement of some or all of the coefficients
of C. If a representation of the product C in the modified
basis is suitable, transformation into the optimal normal
basis is omitted.

The elements A, B have respective coefficients a; and b']-
in the optimal normal basis, and coefficients a;, b; in the
modified basis are obtained using the rearrangement:
if 1l <k =m, [§8]

k
J={(2m+1)—k it m+1 <k <om

where k=2""" mod (2m+1) and a,=a'; and b;=b',.
Coefficients c; of the product C are obtained by summing
products a)b; of the coefficients such that:

-1 '
(ajbjri +ajubj) + Z ajbij+ Z Oty jom = Jm—jr1-

g g

According to another aspect of the invention, a multiplier
is provided for multiplication in GF(2™). A representative
embodiment of such a multiplier comprises AND gates for
obtaining products of coefficients(such as ab;) and XOR
gates for summing the products. The multiplier can include
a converter that transforms the coefficients of an element A
of GF(2™) expressed in an optimal normal basis to a modi-
fied basis. In another embodiment, the multiplier is an
integrated circuit.

According to yet another aspect of the invention, a
computer-readable medium is provided that includes soft-
ware for performing multiplication in GF(2™). The software
includes a conversion component that converts a represen-
tation of an element A, expressed in an optimal normal basis,
to a modified basis. The software also includes instructions
for calculating a product C=A-B by calculating products a,b;
of coefficients of A and B, and summing the products to
obtain coefficients of C in the modified basis. In a further
embodiment, instructions are provided for transforming the
product into an optimal normal or other basis.

These and other embodiments and features of the inven-
tion are described with reference to the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a representative multiplier
that calculates a product of two elements of a Galois field.
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FIG. 2 illustrates an arrangement of gates for the multi-
plier of FIG. 1.

FIG. 3 illustrates a representative arrangement of gates for
a binary XOR tree.

FIG. 4 is a block diagram of a representative multiplier for
the Galois field GF (2°)

FIG. § is a block diagram of an embodiment of a program
that performs Galois field multiplication using a computer.

DETAILED DESCRIPTION

Because the disclosure pertains to methods and apparatus
involving Galois field arithmetic, some properties of Galois
fields are briefly summarized. More complete descriptions
can be found in, for example, R. Lidl and H. Niederreiter,
Introduction to Finite Fields and their Applications, New
York, N.Y., Cambridge University Press (1994), which is
incorporated herein by reference.

For convenience, a few general definitions are provided
first. The symbol € represents “is an element of”, e.g., AeS
means that A is an element of the set S. The relationship
1Zj=m is written as je[1,m]. Finally, if a and b are any two
integers and m is a positive integer, a is said to be “congru-
ent” to b mod m if a and b differ by a multiple of m. The
congruence of a and b is written a=b mod m. Finally, Z,,,+1
is the set of integers {0, 1, . . ., 2m+1}.

A Galois field GF is a non-empty set in which two
operations, generally referred to as multiplication (-) and
addition (+), are defined. The Galois field GF is closed under
the operations of multiplication and addition. If A and B are
elements of GF, then C=A-‘B and D=A+B are also elements
of GF. In addition, the Galois field GF has a multiplicative
identity 1 such that A-1=1-A=A for any AeGF. Any element
A€GF also has a multiplicative inverse A~'eGF such that
AAT=ATTA=L.

For applications such as signal processing, signal coding,
error correction, cryptography, and signal transmission,
mathematical operations in the Galois field GF(2™) contain-
ing 2™ elements are especially important. For m=1, the
Galois field GF(2™)=GF(2) has two elements that are con-
veniently represented by the integers 0 and 1. Mathematical
operations on the elements 0 and 1 in GF(2) follow the usual
rules of arithmetic with the exception that the result obtained
is evaluated “modulo-two” (i.e., “mod 27).In modulo-two
arithmetic, a result is obtained normally and then divided by
two until a remainder of either O or 1 is obtained. For
example, according to usual rules of arithmetic, 1+1=2.
Because 2/2=1 with a remainder of 0, the sum 1+1 evaluated
modulo-two is 0, i.e. (1+1)=0 mod 2. Alternatively, the
modulo-two sum 1+1 in GF(2) is equivalent to binary
addition without carrying.

The operations of addition and multiplication in GF(2)
can be executed as logical operations. If logical TRUE
corresponds to the integer 1, multiplication of 0, 1 is
equivalent to a logical AND. If a, b are elements of GF(2)
(ie., A, B are either O or 1) then A=B=1 only if A=B=1. This
is equivalent to A AND B, which is TRUE only if both A,
B are true. Addition is equivalent to a logical exclusive OR
(XOR). A sum A+B=0 if A=B=0 or A=B=1; otherwise the
sum is 1. This is equivalent to A XOR B.

The Galois field GF(2™) exhibits several additional prop-
erties that are described in, for example, Peterson et al.,
Error-Correcting Codes, 2nd ed., MIT Press, Cambridge,
Mass. (1994) that is incorporated herein by reference. Two
properties useful for explaining embodiments of the inven-
tion are restated here for convenience. Any element A of the
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4

Galois field GF(2™) satisfies the equality A*"=A. Any ele-
ments A, B of the Galois field GF(2™) satisfy the equality
(A+B)*=A>+B>.

The Galois field GF(2™) is conveniently represented as an
m-dimensional vector space defined over GF(2). A set of m
linearly independent vectors that are elements of GF(2™) is
called a basis of the Galois field GF(2™). Any element of the
Galois field GF(2™) can be represented as a linear combi-
nation (sum) of these basis vectors. If a set M of linearly
mdependent basis vectors of the form M= 1B.B%,

} is a basis of GF(2™) for some element
BeGF(Z’") then M is called a normal basis and the element
[ is called a normal element. Using a set of linearly
independent basis vectors such as the normal basis M, any
element A of GF(2™) can be represented as a vector
a=(a,, . . . ,4,,), where the components a, are in GF(2) (i.e.,
are either 1 or 0). For convenience, the notation a is used
herein to refer to the components (a;, . . . , a,) and the
components a; are referred to as components or as coeffi-
cients. In view of such a representation of the elements of
GF(2™), it is apparent that digital data blocks having 2™ bits
can be processed as elements of GF(2™). For example,
coding methods (including both encoding and decoding)
using arithmetic operations in the Galois field can be per-
formed directly on digital data blocks of length 2™; digital
data blocks of other lengths can be extended with additional
bits before processing. Similarly, coders (including both
encoders and decoders) can implement Galois field arith-
metic on digital data blocks. Galois field arithmetic on
digital data blocks can perform encryption, decryption,
encoding, or decoding with error-correcting or error-
detecting codes, such as Reed-Solomon or other BCH codes.
(Such codes are discussed in, for example, Peterson et al.)
As used herein, “coder” and “coding” refer to both encoders,
decoders and encoding, decoding, respectively.

The efficiency of arithmetic operations in the Galois field
GF(2™) is dependent on the basis used to represent the
elements. For example, the complexity of the Massey-
Omura method can be reduced using a normal basis called
an optimal normal basis. There are two types of optimal
normal basis, as classified in, for example, A. J. Menezes,
ed., Applications of Finite Fields, Kluwer Academic
Publishers, Boston, Mass. (1993), which is incorporated
herein by reference. These bases are referred to as optimal
normal bases of type I and type II.

A normal basis for which the normal element [} satisfies
the condition P=y*+y™' is called a type II optimal normal
basis, wherein the element y is in GF(2™) and is a primitive
(2’”+1)th root of unity, i.e., y""*'=1 and y=1 for 1=i=2m.
Optimal normal bases of type II can be constructed for any
Galois field GF(2™) for m such that 2m+1 is a prime number
if either of the following two conditions is satisfied:

(1) 2 is primitive in Z,,,, ,, or

(2) 2m+1=3 mod 4, and 2 generates the quadratic residues

in Z,,,,,. The optimal normal bases corresponding to
the conditions (1) and (2) are referred to as optimal
normal bases of type Ila and type IIb, respectively.

Values of m for which optimal normal bases of types I and
II exist are listed in, for example, A. J. Menezes, ed.,
Applications of Finite Fields, Boston, Mass., Kluwer Aca-
demic Publishers, (1993). Table 1 lists values of m in the
range 2=m=2001 for which an optimal normal basis exists.
Values for which there is an optimal normal basis of type I
are designated with an “x”; values for which an optimal
normal basis of type II exists are designated with a “y.” For
some values of m, both type I and type II bases exist
(designated “xy”). Referring to Table 1, for 2=m=2001,
there are 319 m values for which the Galois field GF(2™) has
an optimal normal bases of type II. For these m values,
efficient mathematical methods are particularly useful.
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TABLE 1

The values of m between 1 and 2001 for which optimal
normal bases of type I (x) or type II (y) exist

2 xy 3y 4x Sy 6y 9y 10 x

18 xy 23y 26y 28 x 29y 0y 33y
41y S0y Sly 52 x 53y 58 x 60 x
T4y 8ly 82 x 83y 86y 89y Ny
100 x 105y 106 x 113y 19y 130 x 131y
146y 148 x 155y 158 y 162 x 172 x 173y
180 x 183y 186y 189 y 191y 194y 196 x
226 x 230y 231y 233y 239y 243y 245y
268 x 270y 273y 278 y 281y 292 x 293y
309y 316 x 323y 326y 329y 330y 338y
354y 359y 371y 372 x 375y 378 xy 386y
410y 411y 413y 414y 418 x 419y 420 x
438y 441y 442 x 443 y 453y 460 x 466 x
490 x 491y 495 y 508 x 509 y 515y 519y
540 x 543y 545y 546 x 554y 556 x 558y
585y 586 x 593y 606 y 611y 612 x 614 y
638y 639y 641y 645 y 650y 651y 652 x
660 x 676 x 683y 686 y 690 y 700 x 708 x
725y 726y T4ly 743y 746y 749 y 755y
771y 772 x 774y 779y 783y 785y 786 x
809 y 810y 818y 820 x 826 x 828 x 831y
852 x 858 x 866y 870y 873y 876 x 879y
906 x 911y 923y 930y 933y 935y 938y
950 y 953 y 965 y 974 y 975y 986 y 989 y
1014 y 1018 x 1019y 1026 y 1031y 1034 y 1041y
1060 x 1065 y 1070 y 1090 x 1103 y 1106 y 1108 x
1119y 121y 1122 x 1133y 1134y 1146y 1154y
1170 x 178 y 1185y 1186 x 1194 y 1199 y 1211y
1228 x 1229 y 1233y 1236 x 1238 y 1251y 1258 x
1274y 1275y 1276 x 1278 y 1282 x 1289 y 1290 x
1310y 1323y 1329y 1331y 1338y 1341y 1346y
1359 y 1370y 1372 x 1380 x 1394y 1398 y 1401y
1425y 1426 x 1430y 1439 y 1443 y 1450 x 1451y
1469 y 1478 y 1481y 1482 x 1492 x 1498 x 1499 y
1518 y 1522 x 1530 x 1533 y 1539y 1541y 1548 x
1593 y 1601 y 1618 x 1620 x 1626 y 1636 x 1649 y
1666 x 1668 x 1673 y 1679 y 1685y 1692 x 1703 y
1733y 1734y 1740 x 1745 y 1746 x 1749 y 1755y
1769 y 1773y 1778 y 1779y 1785y 1786 x 1790 y
1818 y 1821y 1829 y 1835y 1838 y 1845 y 1850 y
1863 y 1866 xy 1876 x 1883 y 1889 y 1898 y 1900 x
1925y 1926 y 1930 x 1931y 1938 y 1948 x 1953 y
1961y 1965 y 1972 x 1973 y 1978 x 1983 y 1986 x

11y 12x 14y
Sy 36 x 39y
65y 66 x 69y
95y 98y 99y
134y 135y 138 x
174y 178 x 179y
209 y 210 xy 221y
251y 254y 261y
299y 303y 306y
346 x 348 x 350y
388 x 393y 398y
426y 429y 431y
470y 473y 483y
522 x 530y 531y
561y 562 x 575y
615y 618 xy 629 y
653y 658 x 659 y
713y 719y 723y
756 x 761y 765 y
791y 796 x 803y
833y 834y 846 y
882 x 891y 893y
939y 940 x 946 x
993 y 998 y 1013 y
1043 y 1049 y 1055 y
1110y 1116 x 1118y
1155y 1166 y 1169 y
1212 x 1218 y 1223 y
1265 y 1269 y 1271y
1205 y 1300 x 1306 x
1349 y 1353y 1355y
1409 y 1418 y 1421y
1452 x 1454 y 1463 y
1505 y 1509 y 1511y
1559 y 1570 x 1583 y
1653 y 1659 y 1661 y
1706 y 1730y 1732 x
1758 y 1763 y 1766 y
1791y 1806 y 1811y
1854 y 1859 y 1860 x
1901 y 1906 x 1923 y
1955 y 1958 y 1959 y
1994 y 1996 x 2001y

Multiplication of elements A, B of GF(2™) begins by
representing A, B in an optimal normal basis of type II.
Elements of a type IT optimal normal basis M of GF(2™) are
given by

M={Bpp*, ... B @

wherein B=y+y~! is a normal element. Because (y+y~)"=y"+
v~ in GF(2™), the optimal normal basis M can be written as

M={y eyt e ®

Arbitrary elements A, B of GF(2™) are expressed in the
optimal normal basis M as

ol i “)
Azaifrarfraf vt =Y a !
i=1
and
el i ®)
B=bif+ by + 0457+ b, f = Y b
i=1

The optimal normal basis M is rearranged to form a
modified basis N, simplifying multiplication of A and B. If

45

50

55

60

65

M is a type Ila optimal normal basis, then 2 is primitive in
Z,,.., and a set P, of powers of 2 evaluated modulo-(2m+1),

D+
P={2,222% ... 27 22" mod (2m+1) (6)
is equivalent to a set Q,, where
0,={1,23,4, ... m}. Q)

The sets P, and Q,; contain integers that are congruent
modulo-(2m+1), but arranged in a different order. If 27, j are
elements of P, Q,, respectively, then for some 1, j
2'=j mod(2m+1). 8)
Therefore, 2'=j+K(2m+1), where K is an integer. Because
v?"*=1 in GF(2™), then y,=y'. Accordingly, the exponents
of y in the elements of the optimal normal basis M are
reduced or increased by 2m+1 so that all the exponents of y
in the optimal normal basis M are brought into the range
[1,m]. Therefore, the basis elements of the optimal normal
basis M of the form y*+y~2 for i €[0,m—1], are written as
¥+y~ for some je[1,m].
A similar transformation is performed with the optimal
normal basis M of type IIb. For a type IIb basis, the
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multiplicative order of 2 mod(2m+1) is equal to m. A set P,
of powers of 2, evaluated (mod 2m+1),

P={2,222% ... 272" mod(2m+1) ©)
includes m distinct integers in the range [1,2m]. These
integers correspond to the exponents of the normal element
[ in the optimal normal basis M. If the exponent 2/,
evaluated mod(2m+1), is in the range [1,m], then the expo-
nent is not changed. If 2' is in the range [m+1,2m+1], then
2" is replaced with (2m+1)-(2" mod(2m+1)), thereby bring-
ing the exponent into the range [1,m]. Because the numbers
2" are all distinct mod(2m+1),the set P, is equivalent to the
set

0.-{124, ... m}. (10)

Therefore, all exponents of y can be brought into the range
[1, m].

If the optimal normal basis M is either a type Ila or a type
IIb basis, the basis M is rearranged into the modified basis
N by reducing the exponents of y into the range [1,m]. The
modified basis N and the optimal normal basis M are:

—1,.2,.-2 2%

(1) _(m1)
AR SR

an
12

M={y+y

N={y+ 920,

Y
N

These bases are equivalent in that the elements of the bases
M, N are the same, but are arranged differently. For the
Galois field GF(2™), the largest exponent of y in the modified
basis N is m.

Because the bases M, N are equivalent, the elements of
the modified basis N can be obtained from the elements of
the basis M by a permutation. Using the modified basis N,
arbitrary members A, B of the Galois field GF can be written
as

13)

(14)

B= Zml bia; = i by +y ).
=) =)

where the elements o, of the modified basis N are a,=y'+y~".
The coefficients a, b; of A, B, respectively, in the modified
basis N are obtained from respective coefficients a',, b'; in the
optimal normal basis M using the following rearrangement:

g

where k=2"! mod(2m+1). Using Equation (15), the coeffi-
cients are related as a;=a'; and b=b';. The elements A, B are

k
Qm+1)—k

if l<ks<m, (15)

if m+1=<k<2m.
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transformed into the modified basis N by rearranging the
respective coefficients a';, b'; as prescribed by Equation (15).

The product C=A-B is obtained using the representations
of A, B in the modified basis N. After transforming A, B into
the modified basis N using Equation (15), the product
C=A'B is:

n (16)
C=) '+

=1

=A.B=[

The product C (in the modified basis N) is found by
determining the coefficients ¢, from the coefficients a,, b;. If
A, B are already expressed in the modified basis N, no
transformation of basis is required. To find the coefficients

¢;, Equation (16) is rewritten as

m

Dlati+yh

i=1

][Z by 4y )]-
1

. . an
aibi(y 7+ +

.ME

L

Ms

aibj (" +y 7

s
7

2

defining sums X, X,. Referring to the sum X, the absolute
values of the exponents (i—j) are all less than or equal to m
(Ji-j|£m), and therefore correspond directly to powers of y
in the elements of the modified basis N. For the special case
in which i=j, then y"~+y~*?=°44°=0 mod 2. Thus, the sum
X, can be rewritten as:

m

. . 18
aibi(y™ +y )
)

b;(y"’f +y ),

If k=[i~j|, then the product ab contrlbutes to the coefficient
c, of the basis element o, =y +y * For example, a contribu-
tion to the coefficient ¢, from the sum X, includes the sum
of all a,b; for which [i~j|=1. Table 2 lists the contributions of
the various products a)b; to the coefficients c;.

TABLE 2

C1

Contributions to the coefficients ¢, from the sum X,

[ c c

'm-—2 'm—1 'm
a;b, + ab; a;bs + azb, aby g +a, by aby +agby
aby + azb, aby, +agb,

i oDm_1 + g b
A 1bm + amby g

m-2

ab, +ab,

oD + AD 5
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Referring to Table 2, the total contribution to a selected
coefficient ¢, from the sum X, is:

m 19
Z aj; j+l + aj+lb ).
J=1

Contributions to the coefficients c, from the sum X, are
obtained next. The sum X, is rewritten as:

20

X, = abi(y™ +yT)

N

ab (,yl+_/ +,y—(1+1))+

J

DM B I

n
Z aby + 7

Jem—i+l

=Y +7Y2, 2h

defining sums Y, Y,. The sum Y, includes powers of y of
the form y™/+y~"*%) wherein i+j is in the range 1=(i+j)=m.
These powers of y therefore correspond directly to powers of
y in the basis elements o, of the modified basis N. If k=i+j,
then a product a,b; of the coefficients of A, B contributes to
the coefficient c, of the product C. Table 3 lists the contri-
butions to the coefficients ¢, from the sum Y.

TABLE 3

Contributions to the coefficients ¢, from the sum Y,

[ c, [N ...oc

m-2 ‘m—1 ‘m
asby asby abm s a;bm o asbgm
asb, asbm_a abm 3 asbm

am 3b; am 3by am 3bs

am by am oba

a, b

m-1-1

For a selected coefficient c,, the total contribution from the
sum Y, is:

22)
= a;by_j.

.
I

Finally, contributions to the coefficients ¢, from the sum
Y, are included. Referring to Equation (20), none of the
exponents of y in the sum Y, are in the range [1,m].
However, the identity y*"*'=1 permits transformation of the

exponents into this range:
noo o L (23)
Y= Z Z aibi(y™ + )
i=1 j=moitl
nm
- Z Z aibj(72m+lf(i+j) +77(2m+17(i+j)))_

Therefore, if i+j>m, then the product a,b; contributes to the
coefficient c,,,,, ; .. For example the product a,b,, con-
tributes to the coefﬁc1ent ¢, since 2m+1—(m+m)=1. Table 4
lists contributions to the coefficients ¢; from the sum Y.,.
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TABLE 4

Contributions to the coefficients ¢ from the sum Y.

¢y c, [N ... Cmo Cmo1 Cm

ambm am 1bm am obm asbm asby, ajbg,
ambm am 1bm asbm asbm asbm
amby > asby > asby > asby 5
am_1by am by am by
ambs am _1bs am obs
amb, am_1by

amby

The total contribution to a selected coefficient ¢, from the
sum Y, is:

24

¢
Z(am l+j 'm—. J+l)
J=1

Multiplication of A, B using the modified basis N is
completed by summing the contributions to each of the
coefficients c, listed in Tables 2—4. The sums X,, Y;, Y, as
displayed in Tables 2—4 comprise products of coefficients of
the form ab; for i, je[1,m]. The number of non-zero entries
in Table 2 for a selected coefficient ¢; (the 1th column of
Table 2) from the sum X is 2(m-1). This is the number of
terms the sum X, contributes to the coefficient c,. Referring
to Table 3, the sum Y, includes 1-1 contributions to the
coefficient c;, and referring to Table 4, the sum Y, includes
1 contributions to the coefficient ¢, Therefore, the total
number of contributions to the coefficient ¢, from the sums
X, Yy, Y, is 2(m-1)+1-1+1=2m-1. Combining ¢;**, ¢, ¢,*?
gives the following result for c:

—i -1

@bjui +ajubp+ Y (ajbiy) +Z (@n-tsjbme 1)

J=1 J=1

3

25
Ccf =

J

Referring further to Tables 2—4, if a product of coefficients
a,b; contributes to the coefficient c;, then the product a b, also
contributes to c,. This is true for the contributions to the
coefficient ¢, from all three of the sums X,Y,,Y,. Products
of coefficients of the form a,b; appear only once, either in the
sum Y, or in the sum Y,. The total number of contributions
to the coefficient ¢, includes one contribution of the form ab;
and 2m-2 contributions of the form a;b;, counting both ab,
and ab,.

EXAMPLE EMBODIMENTS

The modified basis N discussed above facilitates Galois
field multiplication, and coding/decoding and cryptographic
methods and apparatus that use Galois fields. Such methods
and apparatus can be implemented as software or software
modules for execution on a computer, such as a personal
computer or an embedded microprocessor, or as circuits or
circuit components implemented as, for example, an inte-
grated circuit. In addition, application specific processors
can use the modified basis N, implementing portions of the
required rearrangement, multiplications, and sums in a com-
bination of hardware and software.

FIG. 1 is a block diagram of a multiplier 100 (illustrated
as an integrated circuit) for obtaining a product C=A'B of
elements A, B of a Galois field. As noted above, the elements
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A, B are represented by respective coefficients a,, b; of basis
elements o,. The multiplier 100 includes m* two-input AND
gates 110 that receive the respective coefficients a,, b; as
inputs and produce m?* products ab; for i, je[1,m]. The
multiplier 100 includes exclusive-OR (XOR) gates 120 that
calculate the respective sums t,=ab+ab, fori=1,2, . .. , m
and j=i+1,i+2, . . . , m. For GF(2™), the number of XOR gates
120 included is approximately
(m=-D+(m-2)+ . . . +2+1=Yom(m-1). (26)

FIG. 2 illustrates the operation of the AND gates 110 and
the XOR gate 120 to produce a sum t,. An AND gate 1104
receives the respective coefficients a,, b, as inputs and
produces the product a,b;. An AND gate 1105 receives the
coefficients a;, b; as inputs and produces the product ab,. An
XOR gate 120a receives and sums the products a,b; and ab,
to obtain t;.

With reference to FIG. 1, a binary XOR tree 130 sums
¥(2m-2)=m-1 terms of the form t;; and the product a,b, to
obtain ¢;. The binary XOR tree 130 that sums these m
products includes m-1 XOR gates 120 in order to sum the
contributions for all the ¢; simultaneously. FIG. 3 illustrates
a portion of the binary XOR tree 130. Inputs to be summed
are provided to a set 134 of XOR gates 120. Outputs from
the set 134 are summed in a set 136 of XOR gates.
Additional sets of gates are provided so that all the inputs
can be summed together.

The multiplier 100 obtains the products a,b; in a single
AND gate delay time T,. Obtaining the sums t; requires a
single XOR gate delay time Ty. The coefficient c; includes
¥(2m-2)=m-1 contributions of the form t; and a single
contribution of the form a,b;. The binary XOR tree 130 sums
these m contributions with a total delay time of approxi-
mately [log,m|Ty, where Ty is the delay time of a single
XOR gate. Because the contributions for all the coefficients
¢; are summed simultaneously, each of these sums experi-
ences the same delay. Therefore, the calculation of the
product C=A-B requires m*> AND gates and ¥m(m-1)+m
(m-1)=%m(m-1) XOR gates, and the total gate delay is
TA+TX+[10g2m]TX=TA+(1+[logzmﬂsz. In contrast, a
Massey-Omura muliplier requires m~ AND gates and
2m(m-1) XOR gates, and computes the product C within a
time period T,+(1+[log,(m-1)])Tx. The multiplier 100 uses
25% fewer XOR gates than a Massey-Omura multiplier.
Therefore, the multiplier 100 executes Galois field multipli-
cation more quickly and using less circuit area than a
Massey-Omura multiplier.

As an example, multiplication of A, B in the Galois field
GF(2%) is illustrated in FIG. 4. Because 2m+1=2-5+1=11 and
2 is primitive in Z,,, the Galois field GF(2°) has a type Ila
optimal normal basis M of the form M={p,p>,p*,p%,p'°},
where f=y+y~". Using the identity y*!=1, the optimal normal
basis M is converted to the modified basis N. The first three
exponents 1, 2, 4 of f} are in the proper range, i.e., between
1 and 5. The other two exponents (8 and 16) are reduced by
evaluating the exponents modulo-11. For the larger of the
exponents, 16=5 mod 11, and the exponent 16 is reduced to
5. To bring the remaining exgonent 8 within the range [1,5;,
the substitution y¥=y®"'=y™> is used so that y®+y¥=y=>*"
Therefore, the elements o, of the modified basis N={a.,,0.,,
05,0.,,0°} in terms of the elements of the optimal normal
basis M are:

B=y+y =y =cy,

2 a2 a2 a2

B=r* =y =,

Bi=y* =y =,

BE=y*+y =y 4y =i,
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and

I’:\)l6=,\{16+,\{—16=,\{5+,\{—5=a5. (27)

To obtain the product C=A-B of A and B in GF(2°), the
elements A, B, expressed in the optimal normal basis M, are
transformed into the modified basis N. Following the pre-
vious discussion, the coefficients of A, B in the bases M, N
are written as a';, b'; and a;, b,, respectively. Referring to
Equation (27), for i=1,2,5, the coefficients a,=a'; and b,=b';.
For i=3, the coefficients a,=a', and by=b',. For i=4, the
coefficients a,=a'; and b,=b';. These transformations are
summarized as:

(a1,05,5,04,05)=(a'1,0'5,0'4,0'5,0's).
(b1>b2>b3>b4>b5)= (bllab 2040 ’3,b,5)-

Therefore, the coefficients of A, B in the modified basis N
are:

A=(a',a',a',a'5,0's),
B=(b11>b,2>b’4>b’3>b,5)-

FIG. 4 illustrates a multiplier 200 for GF(2*). The mul-
tiplier 200 includes input basis converters 210, 211 that
convert inputs A, B expressed in the optimal normal basis M
to the modified basis N. The input basis converter 210
includes connections 212, 214, 220 that deliver the coeffi-
cients a;, b, for i =1, 2,5 directly to an AND block 230.
Connections 216, 218 interchange a'y and a', to arrange the
coefficients a, in the order specified for the modified basis N.
Connections 217, 219 similarly rearrange the respective
coefficients of B. The connections 212, 214, 216, 217, 218,
219, 220 use a simple rewiring and do not require gates , and
thus the transformation from the optimal normal basis M to
the modified basis N adds no gate delays. The connections
212, 214, 216, 217, 218, 219, 220 can include buffers, or
other output conditioning elements.

The AND block 230 includes m*=5°=25 AND gates 240
that receive the coefficients of A, B and produce the products
ab; for i, j=1, 2, 3, 4, 5. FIG. 4 illustrates a portion of the
AND block 230 that includes five AND gates 240 that form
the products ab; for i, j=1, . . . ,5. The AND block 230
delivers the products a,b; to an XOR block 250 that includes
%m(m-1)=10 XOR gates 260. The XOR block 250 calcu-
lates the sums t;=ab+ab, for i=1,2,3,4,5 and j=i+l,
i+2, ..., 5. For GF(2%), these terms are:

t2=aiby +axby ti3 =a1bs +azbhy tia =arbs +asbhy 115 = arbs +ashy
13 = aobs + azby g = asby +asby 15 = aybs +asbhy
134 = azby + a4bs 135 = azbs + asbs

145 = a4bs + asby

The multiplier 200 also includes a binary XOR tree 270
having m*-m=20 XOR gates. The binary XOR tree 270
receives the sums t; (20 terms) and the products ab, (5
terms) and computes the coefficients ¢, by summing the
contributions:

1=ty ozt Hys+ashs
Co=tyaHyHastHys+a by
Ca=tyyttysttyptastasd,
Cy=ty 5+ 5+ s+ + LD,

Cs=ty 4oz s+ +a3bs
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The multiplier 200 includes an output basis converter 280
that receives the coefficients c; in the modified basis N and
produces the corresponding coefficients ¢'; in the optimal
normal basis M. Referring to FIG. 4, connections 282, 284,
290 transmit the coefficients ¢, c,, c5 directly to an output
as ¢';, ¢'5, ¢'s. Connections 286, 288 interchange c;, ¢, and
produce the coefficients c¢'y=c, and c',=c;. The permutation
of the coefficients of C is:

(€'1:0"2:C"55 €'45C"5)=(€1,62:C 4:C5,C5)-

The multiplier 200 computes the products a,b; in a single
AND-gate delay time T, and the sums t; in an additional
XOR-gate delay time Ty The branch XOR tree 270 takes an
additional time of approximately log,5T5=3Ty so that the
total computation time is about T,+4Tx.

Table 5 summarizes the contributions of the sums X, Y,
Y, to the coefficients ¢, The multiplier 200 uses m*=25
AND gates and 1.5(m*-m)=30 XOR gates. The multiplica-
tion is completed in a time equal to T,+4T, gate delays.

TABLE 5

The contributions of X, Y,, Y,, to the coefficients c; of the
product C = A - B in GF(2%)

5 c, [N cy Cs
X, a;b, +ab; a;by +azb;  aby+asb;  abs+ash,
asbs +azb, ab, +asb, abs +ash,
azb, + asb;  azbs + asbs
a,bs + ash,
Y, a;b, a;b, a,bs ab,
asb, asb, asbs
azb, azb,
azb,
Y, asbs abs azbs a,bs a,bs
asb, asb, azb, asb,
asby ayby azby
asb, asb,
asb,
C tio tis tig tis tig
b3 by bos tis by
taq tss tio trs tis
t45 t45 t35 t34 t24
asbs asby asby ab, asbs

In other embodiments, multiplication of elements A, B in
the GF(2™) to obtain a product C=A'B is performed with a
program or a software module written in, for example, a
high-level programming language such as C++. The pro-
gram is executed with a computer such as a personal
computer, a workstation, an embedded processor, or with
two or more distributed processors. FIG. 5 contains a block
diagram of such a program. An input component 300
receives coefficients a'; and b'; of the elements A, B in an
optimal normal basis M and permutes the coefficients,
transforming the elements to a modified basis N. The
permutation is prescribed in Equation (15). A component
310 calculates the products ab;, a sum component 312
calculates sums t,=a,b;+ab;, and a component 314 calculates
the sums X,, Y;, Y, and determines the coefficients c,. If
additional multiplication in GF(2™) is anticipated, the prod-
uct C is left in the modified basis. The program of FIG. 5
also includes an output component 320 that converts the
coefficients c; into coefficients c'; in the optimal normal
basis.

The program of FIG. § can be implemented to execute in
conjunction with applications programs that encode, decode,
encrypt, decrypt, or otherwise transform data, or can be
implemented as a subroutine or as a component of a software
function library.
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The Galois field multipliers and methods can be used to,
for example, multiply a digital data block, represented by an
element A of a Galois field GF(2™) with another data block,
represented by an element B of GF(2™). In some
applications, powers of A of the form A" are obtained,
wherein n is a positive integer. Products A-B and a” can
represent an encrypted form of the digital data blockA.

Applications of these multipliers include encoders and
decoders for Reed-Solomon codes that are used in, for
example, compact disc players, frequency-hop packet
networks, and spread-spectrum multiple-access communi-
cation systems. In such applications, these multipliers pro-
vide an encoded data packet for transmission or decode a
received data packet. Reed-Solomon codes are discussed in,
for example, S. B. Wicker and V. K. Bhargava, ed., Reed-
Solomon Codes and Their Applications,, IEEE Press, New
York, N.Y. (1994), which is incorporated herein by refer-
ence.

As another example application, cryptographic systems
using finite field arithmetic can also use these multipliers. In
one specific cryptographic system, the multipliers are used
to implement the Diffie-Hellman algorithm to code a data
packet or to decode a coded data packet. The Diffie-Hellman
algorithm is described in, for example, W. Diffie and M. E.
Hellman, “New Directions in Cryptography,” IEEE Trans.
on Information Theory, vol. 22, pp. 644—654 (1976), which
is incorporated herein by reference. The coding/decoding
with the Diffie-Hellman algorithm provides secure data
transmission, secure data storage, data authentication, or a
combination these features. In addition, such systems
include so-called public keys, permitting simple key
exchange. Public keys are described in, for example, W.
Diffie, “The First Ten Years of Public-Key Cryptography,”
Proceedings of the IEEE,, vol. 76, pp. 560-577 (1988),
which is incorporated herein by reference.

As another specific example, the multipliers can also
implement finite field multiplication in elliptic curve cryp-
tosystems. Elliptic curve cryptosystems are described in, for
example, G. B. Agnew et al., IEFE Journal on Selected
Areas in Communication, vol. 11, pp. 804-813 (1993); A. J.
Menezes, Flliptic Curve Public Key Cryptosystems, Kluwer
Academic Publishers (1993); N. Koblitz, “Elliptic Curve
Cryptosystems,” Mathematics of Computation, vol. 48, pp.
203-209 (1987); and V. Miller, “Uses of Elliptic Curves in
Cryptography,” in H. C. Williams, ed., Advances in
Cryptology-CRYPTO 85 Proceedings, Lecture Notes in
Computer Science, vol. 218, pp. 363-378, Springer Verlag
(1997), which are incorporated herein by reference. Elliptic
curve cryptosystems can be included in electronic commerce
systems, Internet-based transaction systems, digital signa-
ture systems, smartcards, and other communications and
network systems.

Whereas the invention has been described in connection
with several example embodiments, it will be understood
that the invention is not limited to these embodiments. On
the contrary, the invention is intended to encompass all
alternatives, modifications, and equivalents as may be
included within the spirit and scope of the invention as
defined by the appended claims.

What is claimed is:

1. A method of coding a digital data block represented as
an element A of a finite Galois field GF(2™), wherein m is
an integer, using multiplication of the element A and an
element B of GF(2™) to produce a product C, the element A
having coefficients a'=(a';, . . . , a',,) in an optimal normal
basis, the method comprising:

rearranging the coefficients a' to determine coefficients

a=(a;, . .., a,) of the element A in a modified basis
(0,02, . . ., ™), wherein o is an element of GF(2™);
and
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determining coefficients c=(c, . . ., ¢,,) of the product C
in the modified basis, the coefficients ¢ being equal to

—i -1 i

(ajbjr +ajubj) + Z ajbj+ Z i1 jDm 115
J=1 J=1

3

¢ =

7

wherein b=(b,, . . ., b,,) are coefficients of the element B in
the modified basis and j, I, m are integers such that 1=1,
JH1=Em.

2. The method of claim 1, wherein the coefficients a' in the
optimal normal basis are rearranged into the coefficients a in
the modified basis according to a=a';, wherein j correspond-
ing to a selected i is determined based on k=2""' mod(2m+1)
such that if 1=k=m, then j=k, and if m+1=k=2m, then
j=Cm+1)-k.

3. The method of claim 1, wherein the product C has
coefficients c=(c,, . . ., ¢,,) in the modified basis and further
comprising rearranging the coefficients ¢ to determine
respective coeflicients c'=(¢';, . . ., ¢',)) of the product C in
the optimal normal basis.

4. A computer-readable medium, comprising software for
performing the method of claim 3.

5. The method of claim 3, wherein the coefficients ¢ in the
modified basis are rearranged into coefficients ¢' in the
optimal normal basis according to ¢,=c';, wherein j corre-
sponding to a selected i is determined based on k=21
mod(2m+1) such that if 1=k=m, then j=k, and if
m+1=k=2m, then j=Cm+1)-k.

6. The method of claim 2, further comprising calculating
at least a product of at least one of the coefficients a and one
of the coefficients b using a logical AND operation.

7. The method of claim 2, further comprising calculating
at least a sum of products of the coefficients a, b using a
logical exclusive OR (XOR) operation.

8. A computer-readable medium, comprising software for
performing the method of claim 1.

9. A multiplier for multiplying elements A, B of a Galois
field GF(2™), wherein m is an integer, to obtain a product
C=A-B, wherein A, B, C have respective coefficients
a=(a;,...,a,),b=(b;,...,b,),c=(c,,...,c,)inamodified
basis (o0, . . ., &™) of GF(2™), wherein o is an element
of GF(2™), the multiplier comprising:

an input situated and configured to receive the coefficients
a, b;

a product component that computes products aib]-, for 1,
j=m;

a first sum component configured to receive the products
ab; for i, j=m and i»j and to determine sums t;=a,b+
ab; and

a second sum component configured to receive the sums
t; and products a,b, to determine at least one of the
coefficients c.

10. The method of claim 9, wherein the coefficients ¢ are

equal to

-1

'
(ajbjri +ajubj) + Z ajbij+ Z Ot jbm -1,
J=1 J=1

wherein j, 1 are integers such that 1=j, 1=m.

11. The multiplier of claim 10, wherein A, B have
respective coefficients a'=(a'y, . . . , a',,) and b'=(b';, ... , b",)
expressed in an optimal normal basis (8, 2, . . ., p*° ) of
GF(2™), wherein f is an element of GF(2™), the multiplier
further comprising an input basis converter that receives the
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coefficients a', b' and transforms the coefficients a', b' into the
coefficients a, b, respectively.

12. The multiplier of claim 11, further comprising an
output basis converter that transforms the coefficients ¢ in
the modified basis into coefficients ¢' in the optimal normal
basis.

13. The multiplier of claim 10, further comprising an
output basis converter that transforms the coefficients ¢ in
the modified basis into coefficients ¢' in an optimal normal
basis.

14. An integrated circuit for calculating a product of
elements of a finite Galois field GF(2™) wherein m is a
positive integer, the integrated circuit comprising:

an input situated and configured to receive coefficients a,

b corresponding to respective elements A, B of the
finite Galois field GF(2™) expressed in a modified basis
M=(a, 0%, . . ., &™), wherein o is an element of
GE(2");

AND gates configured to receive the coefficients a, b and

to produce products of the coefficients of a and b; and

XOR gates configured to sum the products of the coeffi-

cients a, b to obtain coefficients ¢ of a product C=A-B
in the modified basis such that

-1 i

(ajbjri +ajubj) + Z ajbij+ Z [
J=1 J=1

wherein j, 1 are integers such that 1=j, 1=m.

15. The integrated circuit of claim 14, further comprising
an input basis converter situated and configured to receive
coefficients a', b' of A, B, respectively, in an optimal normal
basis, convert the coefficients a', b' to the respective coeffi-
cients a, b and deliver the coefficients a, b to the input.

16. The integrated circuit of claim 15, wherein the input
basis converter transforms the coefficients a' such that a;=a';,
wherein j corresponding to a selected i is determined based
on k=2"' mod(2m+1) such that if 1=k=m, then j=k, and if
m+1=k=2m, then j=Cm+1)-k.

17. The integrated circuit of claim 16, wherein the input
basis converter transforms the coefficients b' such that b;=b';,
wherein j corresponding to a selected i is determined based
on k=2"' mod(2m+1) such that if 1=k=m, then j=k, and if
m+1=k=2m, then j=Cm+1)-k.

18. Abasis converter for transforming a digital data block
of length 2™ bits wherein m is an integer, represented by
coefficients a'=(a';, . . . , a',) with respect to an optimal
normal basis of a finite Galois field GF(2™), into a repre-
sentation in a modified basis, the converter comprising:

an input for receiving the coefficients a';

a basis converter situated to receive the coefficients a' and
convert the coefficients a' into respective coefficients a
in a modified basis (a, . . . , &™) wherein o is an element
of GF(2™), such that a;=a';, wherein j corresponding to
a selected i is determined based on k=2"* mod(2m+1)
such that if 1=k=m, then j=k, and if m+1=k=2m,
then j=(2m+1)-k, wherein i,j,m are integers such that
1Z4, j, mEm.

19. A method of encrypting a digital data block having m

data bits, the method comprising:

expressing the digital data block as an element A of a
finite Galois field GF(2™), the element A having coef-
ficients a' in an optimal normal basis;

transforming the coefficients of A in the optimal normal
basis into respective coefficients a in a modified basis
(a, ..., ™), wherein o is an element of GF(2™); and
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multiplying the digital data block by an element B of
GF(2™) to obtain coefficients ¢ of a product C=A'B,
such that the coefficients ¢ are equal to:

—i -1 i

(ajbjr +ajubj) + Z ajbj+ Z i1 jDm 115
J=1 J=1

3

Ccp =

7

wherein the element B has coefficients b=(b,, . . . ,b,,) in the
modified basis and 1, j are integers such that 1=1, j=m.
20. The method of claim 19, wherein the element B is
equal to the element A.
21. The method of claim 20, further comprising forming
a product A-B?, wherein p is an integer, thereby forming an
encrypted digital data block.
22. A multiplier for multiplying elements A, B of a Galois
field GF(2™), wherein m is an integer, to obtain a product
C=A-B, wherein A, B, C have respective coefficients
a=(ay,...,a,),b=(by,...,b,),c=(c,...,c,)inamodified
basis (o, &, . . ., &™) of GF(2™), wherein o is an element
of GF(2™), the multiplier comprising:
an input situated and configured to receive the coefficients
a, b;

at least one AND gate that computes a product of at least
one of the coefficients a and one of the coefficients b;
and

at least one exclusive OR (XOR) gate that produces a sum

of products of the coefficients a, b to obtain at least one
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of the coefficients ¢, wherein the coefficients c are equal
to

-1

!
(ajbjr +ajubj) + Z ajbj+ Z Gty jOm—j-15
J=1 J=1

wherein j, 1 are integers such that 1=j, 1=m.

23. The multiplier of claim 22, wherein A, B have
respective coefficients a'=(a';, ..., a',,) and b'=(b',, . . .milb'm)
expressed in an optimal normal basis (8, f%, . . ., f* ) of
GF(2™), wherein § is an element of GF(2™), the multiplier
further comprising an input basis converter that receives the
coefficients a', b' and transforms the coefficients a', b' into the

coefficients a, b, respectively.

24. The multiplier of claim 23, further comprising a
output basis converter that transforms the coefficients ¢ in
the modified basis into coefficients ¢' in the optimal normal
basis.

25. The multiplier of claim 22, further comprising an
output basis converter that transforms the coefficients ¢ in
the modified basis into coefficients ¢' in an optimal normal
basis.



