US007401109B2

az United States Patent (10) Patent No.: US 7,401,109 B2
Koc et al. 45) Date of Patent: Jul. 15, 2008
(54) MULTIPLICATION OF MULTI-PRECISION 5,880,985 A * 3/1999 Makineni etal. 708/625
NUMBERS HAVING A SIZE OF A POWER OF 6,026,420 A 2/2000 DesJardins et al.
™o 6,199,087 Bl 3/2001 Blake et al.
(75) Inventors: Cetin K. Kog, Corvallis, OR (US); 6,233,597 B1* 5/2001 Tanoueetal. 708/625
Serdar S. Erdem, Istanbul (TR) 6,343,305 Bl /2002 Koc et al.
6,421,807 Bl 7/2002 Nakamura et al.
(73) Assignee: The State of Oregon Acting by and 6.466.959 B2 10/2002 Blake et al.
Through the State Board of Higher P .
Education on Behalf of Oregon State 6,766,345 B2 712004 Stel_n etal
University, Corvallis, OR (US) 6,993,136 B2* 1/2006 Solinascccccceeeeen. 380/278
’ ’ 7,003,106 B2 2/2006 Ouyang
(*) Notice: Subject to any disclaimer, the term of this 7,031,468 B2 4/2006 Hoffstein et al.
patent is extended or adjusted under 35
U.S.C. 154(b) by 657 days.
(21) Appl. No.: 10/636,321 (Continued)
(22) Filed: Aug. 6, 2003 OTHER PUBLICATIONS
(65) Prior Publication Data Cormen et al., Introduction to Algorithms, MIT, pp. 59-61 (1990).
US 2004/0098440 A1 May 20, 2004 (Continued)
Related U.S. Application Data Primary Examiner—David H Malzahn
74) Att y Agent, or Firm—XKlarquist Sparkman, LLP
(60) Provisional application No. 60/419,204, filed on Oct. (74) dttorney, Agent, or Firm d P
16, 2002, provisional application No. 60/401,589, (57) ABSTRACT
filed on Aug. 6, 2002.
(1) Int. CI. Multi-precision multiplication methods include storing a first
GO6F 7/523 (2006.01)
operand and a second operand as a first array and a second
(52) US.CL vt 708/625 . . .
(58) Field of Classification S h 708/625 array of n words. A first weighted sum is determined from
S:: a ° lica?isosrll ﬁclz }(:rl cc?r?lrcleté searchhlsto multiple subproducts of corresponding words of the first
PP P - operand and the second operand. The methods may further
(56) References Cited include iteratively determining a next weighted sum from a

U.S. PATENT DOCUMENTS

previous weighted sum and a recursively calculated interme-
diate product. The disclosed methods can be used in a variety

4,037,093 A 7/1977 Gregg et al. of different applications (e.g., cryptography) and can be
4,435,823 A 3/1984 Davis et al. implemented in a number of software or hardware environ-
4754421 A % 6/1988 Bosshartc.ccccoe... 708/625 | ents.
4,811,269 A * 3/1989 Hiroseetal. 708/627
5,220,606 A 6/1993 Greenberg
5,457,804 A * 10/1995 ORtomoOccevvveereeennnne 708/627 44 Claims, 11 Drawing Sheets
840
CRYPTOGRAPHIC
CRYPTQ
MEMORY PROCESSO -
854 C R PARAMETER
ST R—
) 856

INPUT

US 7,401,109 B2
Page 2

U.S. PATENT DOCUMENTS

7,082,452 B2 7/2006 Stein et al.
7,111,166 B2 9/2006 Dror et al.
7,133,889 B2 11/2006 Parthasarathy et al.

2001/0024502 Al
2002/0016773 Al
2002/0039418 Al
2002/0041681 Al
2003/0068037 Al
2003/0105791 Al
2003/0110196 Al
2003/0128841 Al
2003/0133568 Al
2003/0135530 Al
2003/0140078 Al
2003/0206628 Al
2003/0206629 Al
2003/0212729 Al
2004/0107341 Al
2004/0109561 Al
2006/0269054 Al

9/2001 Ohkuma et al.
2/2002 Ohkuma et al.
4/2002 Dror et al.
4/2002 Hoffstein et al.
4/2003 Bertoni et al.
6/2003 Stein et al.
6/2003 Stein et al.
7/2003 Ouyang
7/2003 Stein et al.
7/2003 Parthasarathy et al.
7/2003 Feuser
11/2003 Gura et al.
11/2003 Eberle et al.
11/2003 Eberle et al.
6/2004 Hall et al.
6/2004 Koc et al.
11/2006 Dror et al.

OTHER PUBLICATIONS

De Win et al., “A fast software implementation for arithmetic opera-
tions in GF(2r),” Advances in Cryptology—ASIACRYPT 96, Pro-
ceedings, pp. 65-76 (1996).

Diffie et al., “New Directions in Cryptography,” IEEE Trans. Infor-
mation Theory, pp. 644-654 (1976).

Erdem et al., “A Less Recursive Variant of Karatsuba-Ofman Algo-
rithm for Multiplying Operands of Size a Power of Two,” /6th IEEE
Symposium on Computer Arithmetic, 8 pp (2003).

Erdem, “Improving the Karatsuba-Ofman Multiplication Algorithm
for Special Applications,” Ph.D. Thesis, Oregon State University
(2002).

Geddes et al., Algorithms for Computer Algebra, Kluwer Academic
Publishers, Boston Chapter 4, pp. 111-145 (1992).

Guajardo et al., “Efficient algorithms for elliptic curve
cryptosystems,” Advances in Cryptology—CRYPTO 97, Proceed-
ings, pp. 342-356 (1997).

IEEE P1363, “Standard specifications for public-key cryptography,”
Draft Version 13 (Nov. 12, 1999).

Johnson et al., “The Elliptic Curve Digital Signature Algorithm
(ECDSA),” Technical Report CORR 99-34, Dept. of C&O, Univer-
sity of Waterloo, Canada, 55 pp. (1999).

Karatsuba et al., “Multiplication of Multidigit Numbers on
Automata,” Soviet Physics-Doklady, vol. 7, pp. 595-596 (1963).
Knuth, The Art of Computer Programming, vol. 2, Seminumerical
Algorithms, Addison-Wesley, Reading, MA, pp. 265-294 (1998).
Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computa-
tion, vol. 48, No. 177, pp. 203-209 (Jan. 1987).

Kog, High-Speed RSA Implementation: Version 2.0, RSA Laborato-
ries, 73 pp. (Nov. 1994).

Kog et al., “Montgomery Multiplication in GF(2k),” Design, Codes
and Cryptography, vol. 14, pp. 57-69 (1998).

Lidl et al., Introduction to Finite Fields and Their Applications,
Cambridge University Press, New York, NY, pp. 541-566 (1994).
Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Aca-
demic Publishers, Boston, MA, pp. 83-99 (1993).

Menezes et al., Handbook of Applied Cryptography, CRC Press,
Boca Raton, FL, pp. 591-630 (1997).

Miller, “Uses of Elliptic Curves in Cryptography,” Advances in
Cryptology—CRYPTO 85, Proceedings, pp. 417-426 (1985).
Montgomery, “Modular Multiplication Without Trial Division,”
Mathematics of Computation, vol. 44, pp. 519-521 (1985).

Mullin et al., “Optimal Normal Bases in GF(pr),” Discrete Applied
Mathematics, vol. 22, pp. 149-161 (1988).

National Institute for Standards and Technology, Digital Signature
Standard (DSS), FIPS PUB 186-2, 76 pp. (Jan. 2000).

Paar et al., “Fast Arithmetic Architectures for Public-Key Algorithms
over Galois Fields GF((2n)m),” Advances in Cryptology—EURO-
CRYPT 97, Proceedings, pp. 363-378 (1997).

Rivest et al., “A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems,” Communications of the ACM, vol. 21, No. 2,
pp. 120-126 (Feb. 1978).

Schroeppel et al., “Fast Key Exchange with Elliptic Curve Systems,”
Advances in Cryptology—CRYPTO 95, Proceedings, pp. 43-56
(1995).

Silverman, “Fast Multiplication in Finite Field GF (2V),” Crypro-
graphic Hardware and Embedded Systems, pp. 122-134 (1999).
Office action mailed Feb. 1,2007 in U.S. Appl. No. 10/636,326, filed
Aug. 6, 2003 (published as U.S. Patent Application Publication No.
2004/0109561).

Office action mailed Jul. 18,2007 in U.S. Appl. No. 10/636,326, filed
Aug. 6, 2003 (published as U.S. Patent Application Publication No.
2004/0109561).

Office action mailed Feb. 13, 2008, in U.S. Appl. No. 10/636,326,
filed Aug. 6, 2003 (published as U.S. Patent Application Publication
No. 2004/0109561).

* cited by examiner

U.S. Patent

-
w
o

SECOND LEVEL

Jul. 15,2008 Sheet 1 of 11 US 7,401,109 B2
FIG. 1
100
31 132 133 134 135 136 137 138 139
Fle| [-c|-6][3]d [2]3] [ol4] [2]7] [DAl[-c|7][1]3
A A J
H\ M| L H\ M| L H\ M| L
[122 124
F3leclH” 22|37 D1|a3l/ "
. A
L
>
-
- H M L
(Vs
&
LL
F3D1 | 6CA3
120

3;y 3210

110

US 7,401,109 B2

Sheet 2 of 11

Jul. 15, 2008

U.S. Patent

FIG. 2

100

\

PATH 1

PATH 3

PATH 2

131

139
3
126

/_/

.......
-
-

L

\A
8513
#/f,—ﬁo

138

Sy

137

lllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllllll

h

4
0

E
/
W~

74E

L

134

lllllllllllllllllllllllllllllllll

N
24
/:32

-
-
llllll

L

132
\

S5A | | 48
\A
y

6684

llllllllllllllllllllllllllllllllllll

67777TA13

U.S. Patent Jul. 15, 2008 Sheet 3 of 11 US 7,401,109 B2

100

N FIG. 3

_f OBTAIN OCPERANDS a AND b
310

'

DETERMINE A FIRST
WEIGHTED SUM FROM
MULTIPLE SUBPRODUCTS

FOUND BY MULTIPLYING
I WORDS OF a WITH
312 CORRESPONDING WORDS
OF b

DETERMINE A NEXT
WEIGHTED SUM FROM THE

PREVIOUS WEIGHTED SUM
f AND A RECURSIVELY

314 CALCULATED

INTERMEDIATE PRODUCT

ANY FURTHER
ITERATIONS?

316

‘f RETURN THE PRODUCT OF a
318 AND b

U.S. Patent Jul. 15, 2008 Sheet 4 of 11 US 7,401,109 B2

FIG. 4

DETERMINE SUBPRODUCTS
BY MULTIPLYING WORDS OF
a WITH CORRESPONDING
WORDS OF b

410

SHIFT THE SUBPRODUCTS
BY AN AMOUNT RELATED TO

412 A POWER OF THE RADIX

ADD THE SHIFTED
SUBPRODUCTS TO OBTAIN

414 THE FIRST WEIGHTED SUM

‘-_-----------------------

U.S. Patent Jul. 15, 2008 Sheet 5 of 11 US 7,401,109 B2

FIG. 5

SHIFT THE PREVIOUS
WEIGHTED SUM BY AN
AMOUNT RELATED TO THE

510 ITERATION LEVEL k

RECURSIVELY DETERMINE

f
]

]

]

]

]

]

]

]

[

]

[

:

THE INTERMEDIATE

. PRODUCT

]

]

]

]

]

]

]

[

[

]

]

]
A

]

[|

§

|

]

]

|

]

|

§

\

512

ADD THE PREVIOUS
WEIGHTED SUM, THE
SHIFTED PREVIOUS
WEIGHTED SUM, AND THE
INTERMEDIATE PRODUCT
TO OBTAIN THE NEXT
WEIGHTED SUM

514

\-----------q--q-q--qq--------l

U.S. Patent Jul. 15, 2008 Sheet 6 of 11 US 7,401,109 B2

600

\

OBTAIN OPERANDS a AND b, WHEREIN a
AND b HAVE n WORDS, n BEING AN FIG 6
INTEGER POWER OF 2)

-

DETERMINE A WEIGHTED SUM
sumP,, ,, WHEREIN

n-1

sumP,,, , = > a[i}+b[i]Z’ L\
i=0
612

-

OF ITERATIONS k := log,n

r

DETERMINE A WEIGHTED SUMsumP, _, ,
WHEREIN

sumP,_, = (1+z")sumP, +

214 _
Y s,()sp(ymid(j)z#+Om 614 /

i=0

. AND
m=n/2%;
mid(i) = | a"[2im]- a™[(2i +)m] | x k= k-1
| b7 [(2i +1)m]-b™[2im] E 'y

s.()= sign(a™[2im}-a™[(2i + 1)m]); AND
s,(f)= sign(b™[(2/ +)ym]-b™[2im])

DOES k=17

616

618
ASSIGN axb = sumP, ,/

U.S. Patent Jul. 15, 2008 Sheet 7 of 11 US 7,401,109 B2

)
5 s
’ :
3 £03 e '
i (BT T ‘ :
131 133 i 24] 137 139E
T U e <-4 5A} '
; S ------ \ / 5CC23 \ / /:
[PEE AN puimlmmy premrenccen - P - ‘\l
T Tl [T Hr g ol
:;Feg-c-e];sc;;m of4| |2[7ki[DjAlif-c| 7 |i{1{3]t
1 ; ' li ' I S n
(S SR I Ry - [yl W SO At

H\ M| L H\ M| L H\ M| L

f1/22 124 126
F3|6C -22 | -37 D1| A3
?
H M L
F3D1 | 6CA3

3210 3210

U.S. Patent Jul. 15, 2008 Sheet 8 of 11 US 7,401,109 B2

FIG. 8
T sumP, = (l+2Z)sumPpe ¥
22-1_4 I
5 35, (i)s, ()Y mid(i) 2V < E
] i=0
5 5CC23 E
: 5CC230 :
: 132 {-540}ee 138 5
e »{48000 !
o T 670913 5
L ! ainiaighiciant 3 i W
HIFleftcl-6]i3|c| 23] [o|4 27]; plalilc|7]i[1]3]!
a : 5 : : o
R S N A ! I WS Ly
H\ M| L H\ M| L H\ M| L
F3|6C -22 | -37 D1 A3
1
H M L
F3D1 | 6CA3

3210 3210

U.S. Patent Jul. 15, 2008 Sheet 9 of 11 US 7,401,109 B2
700
(sumB, , sumP1=W
---------- e B
------------ ¥ men—— - - =r——
————————— T 6)
‘,r" 1" aamant .
134 135 136 6E)
NN 102
FEEEE] -
""" U mid(0) =| a[0]-a[1]| | b[1]-b[0] |
e =|2-2]|3-7]
H\ M| L/ 7 > = 0(4)
=0
N)
704 l
T ~
22 | .37 sumP, = (1+z) sumP, ::
— — s,(0)s, (0)mid(0)z’ =
6E
124 6EO o
{0 e
74E

U.S. Patent Jul. 15, 2008 Sheet 10 of 11 US 7,401,109 B2

FIG. 10 g :}j_r:\Po=(1+zz)sumP,+ E
| Zsa(i)sb(i)mid(i)z‘Z"”‘)z =1
i 670913 i
! 67091300 |
E 74E00 :
_____________________]
' {e7776a13) |
; "
Fle| [<|-6] 3]cli [2[3] |of4| [2[7]i[D]a||-<|7||1]3
]
! i ! i f

| \

H\ M| L/ | H\M|L I H\ M| L

]

s §
' 1
' '
! 1
! 1
3 :

F3|6C E -22 | -37 ' D1|A3

10 10 i~------1-0--ﬂ'¥\\o---'; 1 0¥ 10

H M 124 L
F3D1 6CA3

3210 3210

U.S. Patent Jul. 15, 2008 Sheet 11 of 11 US 7,401,109 B2

800
FIG. 11 81(81(’& e
) \
S
MEMORY PROCESSOR OUTPUT
» \
i 816
INPUT
814 P 420
830
FIG. 12 - &
Y
OPERAND a N
MULTIPLYING PRODU(;T
OPERAND b CIRCUIT \
-
/ 834
833
FIG. 13 85(85{ - 840
\ 3
e

CRYPTO CRYPTOGRAPHIC
854 MEMORY PROCESSOR QRAMETER >

SUR—
A 856
INPUT

US 7,401,109 B2

1

MULTIPLICATION OF MULTI-PRECISION
NUMBERS HAVING A SIZE OF A POWER OF
TWO

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application 60/401,589, filed Aug. 6, 2002, and U.S.
Provisional Patent Application 60/419,204, filed Oct. 16,
2002, both of which are incorporated herein by reference.

FIELD OF INVENTION

This application relates to the multiplication of multi-pre-
cision numbers in a variety of different applications, includ-

ing cryptography.
BACKGROUND

Performing mathematical operations on large numbers can
be a time-consuming and resource-intensive process. One
method of handling large numbers involves dividing the num-
bers into smaller divisions, or words, having a fixed length.
Numbers divided in this manner are termed “multi-precision”
numbers. In the field of digital circuits, for instance, the
binary representation of a large number can be stored in
multiple words, wherein each word has a fixed length of n bits
depending on the word size supported by the associated hard-
ware or software. Although adding and subtracting multi-
precision numbers can be performed relatively efficiently,
multi-precision multiplication is much more complex and
creates a significant bottleneck in applications using multi-
precision arithmetic.

One application that requires multi-precision arithmetic is
cryptography. Many public-key algorithms, including the
Diffie-Hellman key exchange algorithm, elliptic curve cryp-
tography, and the Elliptic Curve Digital Signature Algorithm
(ECDSA), involve the multi-precision multiplication of large
numbers. For example, elliptic curve systems perform multi-
precision arithmetic on 128- to 256-bit numbers, while sys-
tems based on exponentiation employ 1024-to 2048-bit num-
bers.

In order to improve the performance of these and other
cryptographic systems, it is desirable to improve the effi-
ciency of the multi-precision multiplication algorithm. Any
improvements, even if relatively small, can result in a signifi-
cant increase in the overall performance of the application,
because the multiplication algorithm can be called many
times during normal operation.

SUMMARY

Methods and apparatus are disclosed for multiplying
multi-precision numbers. In certain embodiments, fewer
recursions are performed than in the known methods. As a
result, the methods can be used to increase performance in a
variety of applications that utilize multi-precision arithmetic.
One particular application in which this improved perfor-
mance is desirable is cryptography.

In one disclosed embodiment, a method of multiplying two
operands is provided. In the method, the first operand is stored
as a first array of n words. Similarly, the second operand is
stored as a second array of n words. In the method, n is an
integer whose value is a power of two. The first and second
array may be padded with zeros so that they each have n
words. The method of this embodiment further includes

20

25

30

35

40

45

50

55

60

2

determining a first weighted sum from multiple subproducts
of corresponding words of the first operand and the second
operand. The corresponding words of the first operand and
the second operand may be associated with a selected power
of'the radix. The first weighted sum may also include adding
aword-shifted version of at least one of the subproducts. The
subproducts in the first weighted sum may correspond to
branches from a corresponding recursion tree. Specifically,
the subproducts may correspond to low or high branches
having no mid-branch ancestors. The method of this embodi-
ment additionally includes iteratively determining a next
weighted sum from a previous weighted sum and a recur-
sively calculated intermediate product. In one of the itera-
tions, the previous weighted sum may be equal to the first
weighted sum. In certain implementations, the next weighted
sum includes a shifted version of the previous weighted sum.

The disclosed methods may be used in a number of differ-
ent applications that utilize multi-precision arithmetic. For
example, the method can be used to generate various crypto-
graphic parameters. In one particular implementation, for
instance, a private key and a base point are multiplied using
one of the disclosed methods to obtain a product that is
associated with a public key. In this implementation, the
private key and the base point are multi-precision numbers
having n words, wherein n is an integer that is a power of two.
The disclosed methods may similarly be used in a signature
generation or signature verification process (e.g., the Elliptic
Curve Digital Signature Algorithm (ECDSA)).

The disclosed methods may be implemented in a variety of
different software and hardware environments. Any of the
disclosed methods may be implemented, for example, as a set
of instructions stored on a computer-readable medium. The
methods may also be implemented in a variety of integrated
circuits, such as a field programmable gate array.

These and other features of the disclosed technology are
described below with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary recursion tree.

FIG. 2 is a block diagram illustrating the operation of the
Karatsuba-Ofman algorithm using the recursion tree of FIG.
1.

FIG. 3 is a flowchart showing a general method of multi-
plying multi-precision operands.

FIG. 4 is a flowchart showing a general method of perform-
ing process block 312 from FIG. 3.

FIG. 5 is a flowchart showing a general method of perform-
ing process block 314 from FIG. 3.

FIG. 6 is a flowchart showing a particular implementation
of'a method of multiplying multi-precision operands.

FIG. 7 is a first block diagram illustrating the operation of
the method of FIG. 6 using the recursion tree of FIG. 1.

FIG. 8 is a second block diagram illustrating the operation
of the method of FIG. 6 using the recursion tree of FIG. 1.

FIG. 9 is a third block diagram illustrating the operation of
the method of FIG. 6 using the recursion tree of FIG. 1.

FIG. 10 is a fourth block diagram illustrating the operation
of the method of FIG. 6 using the recursion tree of FIG. 1.

FIG. 11 is a block diagram of a general-purpose computer
configured to perform multi-precision multiplication accord-
ing to the disclosed methods.

FIG. 12 is a block diagram of a dedicated digital circuit
configured to perform multi-precision multiplication accord-
ing to the disclosed methods.

US 7,401,109 B2

3

FIG. 13 is a block diagram of a cryptographic system
configured to perform multi-precision multiplication accord-
ing to the disclosed methods and to output a cryptographic
parameter.

DETAILED DESCRIPTION

Disclosed below are representative embodiments that
should not be construed as limiting in any way. Instead, the
present disclosure is directed toward novel and nonobvious
features and aspects of the various embodiments of the multi-
precision multiplication methods and apparatus described
below. The disclosed features and aspects can be used alone
or in novel and nonobvious combinations and sub-combina-
tions with one another.

Although the operations of the disclosed methods are
described in a particular, sequential order for the sake of
presentation, it should be understood that this manner of
description encompasses minor rearrangements, unless a par-
ticular ordering is required. For example, operations
described sequentially may in some cases be rearranged or
performed concurrently. Moreover, for the sake of simplicity,
the disclosed flowcharts typically do not show the various
ways in which particular methods can be used in conjunction
with other methods. Additionally, the detailed description
sometimes uses terms like “determine” and “obtain” to
describe the disclosed methods. These terms are high-level
abstractions of the actual operations that are performed by a
computer or digital circuit. The actual operations that corre-
spond to these terms will vary depending on the particular
implementation and are readily discernible by one of ordinary
skill in the art.

As more fully described below, the disclosed methods can
be implemented in a variety of different environments,
including a general-purpose computer, an application-spe-
cific computer, an integrated circuit (e.g., a field program-
mable gate array), or in various other environments known in
the art. The particular environments discussed, however,
should not be construed to limit the scope of use or function-
ality of the disclosed methods.

General Considerations

Hardware or software implementations typically support a
fixed word size. In these implementations, large numbers are
typically represented as multiple words, wherein each word
comprises multiple bits. As noted above, multi-word numbers
are called “multi-precision” numbers and can be manipulated
on a word-by-word basis using “multi-precision arithmetic.”

For purposes of the present disclosure, unsigned multi-
precision numbers are denoted as bold-face variables.
Accordingly, let a be a number stored in n words of w bits
each. The words of a are denoted as a[0], a[1], . . ., a[n-1].
Further, letag, a,, ..., a,,.; denote the bits of a from the least
significant to the most significant. Thus, a[i] contains the bits

a,,,,forj=0, ..., w-1 and represents the 1-word number

20

25

30

35

40

45

50

55

60

65

4

The word a can also be written in radix z=2" as follows:

M

Alternatively, the multi-precision number a can be viewed
as an array of words, from the Oth word to the (n—1)th word.
Multiple subarrays can also be defined from the words that
constitute a given multi-precision number. In particular, let
a’[k] denote the subarray containing the words a[k+i] for
i=0, . .., 1-1 and represent the following 1-word number:

@

wherein n and | are integers, k is an index to the first word of
the subarray, and 1 is the length of the subarray in words.

Multi-word operations used in the methods described
below include: (1) adding and subtracting; (2) multiplying by
powers of z=x""; and (3) assigning values to subarrays. The
addition and subtraction of two n-word numbers produces
another n-word number, plus an extra bit. This extra bit is a
carry bit for addition and a sign (or borrow) bit for subtrac-
tion. Multi-precision addition and subtraction are relatively
easy operations. Further, because z is 2", multiplying a num-
ber by 7' is equivalent to left-shifting the words of the corre-
sponding array by i positions. That is, the jth word becomes
the (i+j)th word. Because of the shifting, the Oth through
(i-1)th words are emptied and typically filled (or “padded™)
with zeros.

The subarray of a number can be assigned a number. For
example, let a be an n-word number and b be an l-word
number. Consider the following assignment:

a'[k]:=b 3)
This assignment overwrites the words of a. The words a[k+i]
for i=0, . . ., 1-1 are replaced with the words b[i] for
i=0, . .., 1-1 respectively.

The Karatsuba-Ofman Algorithm (KOA)

The classical multi-precision multiplication algorithm
straightforwardly multiplies every word of the first operand
by every word of the other operand and adds the partial
products. This algorithm is sometimes referred to as the
grade-school method and has an O(n?) complexity where n is
the multiplicand size.

The Karatsuba-Ofman Algorithm (“KOA”) is an alterna-
tive multi-precision multiplication algorithm. The KOA has
an O(n'*®) asymptotic complexity, and thus multiplies large
numbers faster than the classical method. KOA is a recursive
algorithm that uses a so-called “divide-and-conquer” strat-
egy. The following paragraphs describe the general principles
underlying the KOA.

Let a and b be two n-word numbers where n is even. The
n-word numbers a and b can be split into two parts as follows:

a=a;+agz"? b=b+byr"? 4
where a,=a"2[0], b,=b""?[0], a,=a"?[n/2], and b,=b"?[n/2].
In other words, a; and b; are the numbers represented by the
low-order words (the first n/2 words), while a,; and b, are the
numbers represented by the high-order words (the last n/2
words).

US 7,401,109 B2

5

Next, let t=a*b. Then, t can be written in terms of the
half-sized numbers a,, b,, a,, and b, as follows:

r=a-b ©)

=(aL+ a, Jor + szn/z)

=aby + (apby + agb)7? + aHszn

As seen in Equation (5), the product t can be computed
from four half-sized products: a;b;, a,b,, agb;, and azb,,.
On the other hand, the equality a, b, +a;b,=a, b, +a;b,+(a,; -
az)(bg,—b;) can used in Equation (5) to obtain:

t=aphp+{arhi+agbar-ag) (b-by)]" > +ayb " (6)
Equation (6) shows that three half-sized products are suffi-
cient to compute t instead of four. These products are: a,b,,
agbg, and (a;-az)(b,~b;). Although the number of products
is reduced, the number of additions and subtractions is
increased. Because the complexity of adding and subtracting
is linear (i.e., O(n)), however, the computation is simplified
overall. Note that the multiplications by the powers of z=2""in
Equation (6) need no computation. These multiplications cor-
respond to array shifts and can be achieved by the proper
indexing of the arrays representing the numbers in (6).

As shown in Equation (6), the KOA computes a product
from three half-sized products. In a recursive process, KOA
computes each of these half-sized products from three quar-
ter-sized products. When the products reach some designated
size, (for example, when the multiplicands are reduced to one
word), the recursion stops and the products are computed
using classical methods.

The following pseudocode describes an exemplary imple-
mentation of the KOA function. In the disclosed function, the
inputs are assumed to be multi-word numbers that can be split
evenly into lower- and higher-order words at each recursion
level. Thus, the size n of each input must be a power of two.
The function does not need to be limited to this special case,
however, as a general function can be derived for the KOA
that splits the inputs when their size n is not divisible by two.

function: KOA(a, b : n-word number; n : integer)
t : 2n-word number
ar, Ay a5 ¢ (1/2)-word number
low, mid, high : n-word number
begin
/* When the input size is one word */

Step 1: ifn=1thenreturnt:=a*b
/* Generate 3 pairs of half sized numbers */
Step 2: ar = a™?[0]
Step 3: by = b¥?[0]
Step 4: ag = a™2[0/2]
Step 5: by = b™2[0/2]
Step 6: (S ang) =81 — 8y
Step 7: (Spy bpp) 1= by — by,
/* Recursively multiply the half sized numbers */
Step 8: low := KOA (a;, by, 0/2)
Step 9: high = KOA (ay;, by, 1/2)
Step 10: mid := KOA (ayg, by, 1/2)
/* Combine the subproducts to obtain the output */
Step 11: t := low + (low + high + s,s,mid) z*? + high z*

return t
end

In Step 1, the size of n is considered. If it is one (i.e., if the
inputs are one-word numbers) the inputs are multiplied and
the result returned. Otherwise, the function continues with the

20

25

30

35

40

45

50

55

60

6

remaining steps. In Steps 2 through 5, (n/2)-word numbers a;,
b;, a, and b, are generated from the lower- and higher-order
words of the inputs. In Steps 6 and 7, a,,, b,,, s, and s, are
produced by the subtraction operations described below:

s =sign(a;—ay) ar=la;—ag!

M
The values of a,, b,,, sign,, and sign, are the magnitudes
and signs of the subtractions, respectively, in Steps 6 and 7.
Likea,, b;,a,, andb,, a,,and b, have n/2 words. In Steps 8,
9 and 10, these n/2-word numbers are multiplied by recursive
calls to the KOA function.
The values of low, high, and mid are calculated as follows:

sy=sign(bs—by) by=1bsby

low=a;b;
high=azbz

mid=la;-agllb~b,|

®)

Instep 11, the product t=a*b is found using Equation (6). In
this equation, low is substituted into a, b, , high into a;b,,, and
s,.s,mid into (a;—az)(by-b;). Note that s,s,mid=(sla,—a,l)
(s,/bz=b)=(a,~az)(by=b,).

The Karatsuba-Ofman Algorithm with Two’s-Complement
Arithmetic

In a typical computer-based implementation of the KOA,
multi-word additions and subtractions are performed on a
word-by-word basis using two’s-complement arithmetic. The
exemplary KOA function described above represents multi-
word numbers in sign-magnitude form and does not describe
the details of multi-word additions and subtractions. In this
section, the KOA function is implemented using two’s-
complement representations for multi-word numbers.

The following pseudocode describes an exemplary imple-
mentation of the KOA function using two’s-complement
arithmetic.

function: KOAcomp (a, b : n-word number; n : integer)
t : 2n-word number
ar, ang, 8y ¢ (0/2)-word number
low, mid, high : n-word number
begin
/* When the input size is one word */

Step 1: ifn=1thenreturnt:=a *b
/* Generate 3 pairs of half sized numbers */
Step 2: ap = a¥2[0]
Step 3: by, == b¥2[0]
Step 4: ag = a%2[0/2]
Step 5: by = b*2[0/2]
Step 6: (b,, anp) =8, — ag
Step 7: (by, bag) =by — by
Step 8: if b, = 1 then ay; := NEG(ay;)
Step 9: if by, = 1 then by, := NEG(by,)
/* Recursively multiply the half sized numbers */
Step 10: t"[0] := KOAcomp(az, by, /2)
Step 11: t"[n] := KOAcomp(ayy, by, 1/2)
Step 12: mid := KOAcomp (ays, byp 1/2)
/* Combine the subproducts to obtain the output */
Ifb, = by, then
Step 13: (¢, mid) = t*[0] + t"[n] + mid
else
Step 14: (¢, mid) = t"[0] + t"[n] — mid
Step 15: (c', t"[0/2]) = t*[0/2] + mid
Step 16: t2[3n/2] = t*2[3n/2] + ' +¢
return t
end

The functions KOA and KOAcomp first differ in Steps 6
and 7. In these steps, subtractions produce the results in
two’s-complement form. The subtraction a; —a, produces the

US 7,401,109 B2

7

(n/2)-word number a,, and the 1-bit borrow b,,. Similarly, the
subtraction b,~b; produces the (1/2)-word number b,, and
the 1-bit borrow b,. The NEG function seen in Step 8 and 9
performs a negation operation, which is a two’s-complement
operation. In these steps, b, and b, are checked to determine
the signs of (a;-a,;) and (b,~b;). If b,=1 and b,=1, the values
of (a;-ay) and (by,-b;) are negative and a,, and b,, are
negated. In two’s-complement form, the magnitude of a num-
ber is itself if it is positive, or its negation if it is negative. As
a result, Steps 8 and 9 provide that a,,~la,—azl and b,~Ib,—
byl

In Steps 10, 11, and 12, the products of a,b;, a;b,, and
a,b,~la;—agllb;—b,l are found. In these steps, the product
a b, is stored into mid, while the products a,;b; and a b, are
stored into respective lower and higher halves of the output
array t (t”[0] and t”[n]). In contrast to the KOA function, the
local variables low and high are not defined or used, resulting
in fewer memory resources being used.

In Steps 13 and 14, the sum a, by +a,b,=a, b, +a b +(a, -
az)(b,~b;) is found. The result is stored into the n-word
variable mid and the 1-bit carry c. In this computation, t*[0]
and t”[n] (which contain a;b; and a;b,;) are added together.
Moreover, ifb,=b,, mid=la, —a,l|b; bl is added to the sum.
Otherwise, mid is subtracted from the sum. In essence, then,
(az—az)(by~b;) is added to the sum. Accordingly, (¢, mid)=
a;b,+a,b+(a,—a,)(by,~b;) and t=a,b, +ab,7".

In Steps 15 and 16, t is added to the term [a’b, +a b +(a, -
a,,)(b,~b,)]Z"? so that t=a*b. To perform this operation, the
subarray t“[n/2] is added to mid in Step 15. This addition
yields the carry-bit ¢'. Then, the carry bits ¢ and ¢' are propa-
gated through the most significant n/2 words of t in Step 16.

Complexity of the KOA

In this section, the complexity of the exemplary KOAcomp
function is determined. In the complexity analysis that fol-
lows, the cost of manipulating the carry and borrow bit is
ignored because it is small in comparison to the multi-word
operations.

The following table gives the numbers of word-operations,
word-reads, and word-writes needed when the input length is
n>1. The first, second, and third columns give the number of
word-operations, memory reads, and memory writes, respec-
tively. Steps 2 through 5 are ignored because a;, a,, b;, and
b, are just copies of the lower and higher halves of the inputs.
In practice, pointers to the lower and higher halves of the
inputs are used instead of copies. The KOAcomp function
performs two n/2-word subtractions in Steps 6 and 7, two
n-word additions in Step 13 (or one n-word addition and one
n-word subtraction in Step 14), one n-word addition in Step
15, and one n/2-word addition with an input carry in Step 16.
The function also performs an n/2-word negation in Step 8 if

TABLE 1

The complexity of a recursive call with the input lengthn > 1.

Step No. Operation Read Write
6,7 n 2n n
8,9 n/2 n/2 n/2
10,11, 12 recursions

13,14 2n 4n 2n
15 n 2n n
16 n/2 n/2 n/2
Totals 5n 9n 5n

20

25

30

35

40

45

50

55

60

65

8

b,=1, and another one in Step 9 if b,=1. Assuming that b, and
b, are equally probable to be one or zero, each recursive call
averages one n/2-word negation.

For each multi-word operation, the number of word-writes
is equal to the number of word-operations, while the number
of word-reads is equal to the number of word-operations
multiplied by the number of multi-word operands.

In Steps 10, 11, and 12, there are three recursive calls with
half-sized inputs. Consequently, the complexity T(n) can be
found as follows:

T(n)y=3T(n/2)+un ()]
where pn is the total number operations (the reads and writes
given in Table 1). Thus, pn=5n+9n+5n=19n. Using Equation
(9), and assuming n=2* for some integer k:

T) = 3T+ [/ + ...+ B/ +3/2+ un (10)

=T +[1+2/3+2/3)% +.. + 2/ Nun3 /2!
=3 7(1)+3[1 - (2/3 Jun(3/2)4!

=34 [T(1) + 2] - 2un

where T(1) is the complexity of one-word multiplication.
Moreover, 3*=(2%y°82 3=p’°82 30158 Thus,

T(ny=n">8[T(1)+2u]-2pn. (11)
Recursivity of KOA

Consider the multiplication of n=2*>1 word numbers with
the KOA, where k is some integer. Let r(n) be the number of
recursions needed for this computation. The initial call makes
three recursive calls with n/2-word inputs. These three recur-
sive calls each lead to r(1/2) recursions. Thus, the following
recurrence may be calculated:

rn)=3+3r(n/2) (12)
=349+ +3 435D
=3+9+... +3 =33 - Dy/2.

Recursion Tree Analysis and Terminology

A recursion tree is a diagram that depicts the recursions in
an algorithm. Recursion trees can be particularly helpful in
the analysis of recursive algorithms like the KOA that may
call themselves more than once in a recursion step.

The recursion tree of an algorithm can be thought of as a
hierarchical tree structure wherein each branch represents a
recursive call of the algorithm. FIG. 1 shows an exemplary
recursion tree 100 that depicts the multiplication of two
exemplary operands using an algorithm similar to the KOA.
In the example shown in FIG. 1, the hexadecimal numbers
“F3D1” and “6CA3” are multiplied. The initial call to the
algorithm is represented by the root 110 of the tree 100. The
recursive calls made by the initial call constitute the first level
of recursion 120 and are represented by the first-level
branches 122, 124, 126 emerging from the root 110. The
recursive calls made by the branches 122, 124, 126 constitute
a second level of recursion 130 and are represented in the
recursion tree 100 by the second-level branches 131 through
139 emerging from the first-level branches 122, 124, 126.
This process of recursion may continue until a final recursion
level is reached, but in the illustrated example extends only

US 7,401,109 B2

9

two recursion levels. A branch emerging from another branch
may be called a “child.” Similarly, the branch from which the
child stems may be called the “parent.” In FIG. 1, for instance,
branch 131 is the child of branch 122. In the recursion tree, if
a branch represents a particular recursive call, its children
represents the recursive calls made by that call. In other
words, a “caller-callee” relationship in an algorithm corre-
sponds to a “parent-child” relationship in the recursion tree. If
arecursive call made at some recursion level makes no further
recursive calls, the branch representing it in the tree has no
children, and may be called a “leaf”

In the recursion tree depicted in FIG. 1, three recursive
calls are made by each of the three branches 122, 124, and
126. Thus, three branches emerge from each preceding
branch. The leaves 131-139 represent multiplications of one-
word inputs, which do not make any recursive calls because
they can be easily calculated using classical methods. Gen-
erally speaking, the size of the input parameters are reduced
by halfin each successive recursion level in the recursion tree.
Thus, at some level, the branches will have one-word inputs
and cease to make any further recursive calls.

Recursive tree terminology may be used to describe the
KOA or a similar divide-and-conquer algorithm. For
example, if one recursive call invokes another, the first recur-
sive call may be referred to as the parent, and the latter
recursive call as the child. Thus, a branch may be used as a
synonym for a recursive call, and a leaf as a synonym for a
recursive call with one-word inputs. Additionally, a path is
defined as a sequence of branches from the root in which each
branch is a child of the previous one.

Consider the branch 122 in the KOA. This branch is a call
to the KOA function described above. It has two inputs, “F3”
and “6C”. From these inputs, the branch 122 generates the
half-sized pairs (a;, b;), (az, by), and (a,, b,,) (or (3,C), (F,6),
and (-C,-6), respectively). Its children take these pairs as
inputs, multiply them, and return the subproducts low, mid,
and high in Steps 8 through 10.

In the KOA, there are three choices for a branch. A branch
either takes the input pair (a;, b,) from its parent and returns
the subproduct low, takes the input pair (a,, b;,) and returns
the subproduct high, or takes the input pair (a,,, b,,) and
returns the subproduct mid. For purposes of this disclosure,
these first, second, and third types of branches are called low,
high, and mid branches respectively. This classification of the

branches is given in Table 2 below.
TABLE 2
The classification of the branches in the tree
LOW BRANCH takes the input pair (a;, by) from its parent
returns the subproduct low to its parent
HIGH BRANCH takes the input pair (ag, byy) from its parent
returns the subproduct high to its parent
MID BRANCH takes the input pair (ays, byy) from its parent

returns the subproduct mid to its parent

In each recursion level k, a special set of branches B, also
exists. The common property of the branches in this set is that
their ancestors and themselves are not mid branches. The root
satisfies this property because it has no ancestor and is not a
mid branch. On the other hand, a branch in a further recursion
level satisfies this property ifitself and all its ancestors, except
the root, are low and high branches. Thus, B, for k=0 can be
defined as follows:

Definition 1: B, is the set whose only element is the root. B,
for k=1 is a set of branches at the kth recursion level whose
ancestors, except the root, are are all low and high branches.

20

25

30

35

40

45

50

55

60

65

10

The branches in the set B, constitute “paths” of low and
high branches starting from the root. These paths are unique
for each branch in the set B,. Using this fact, a unique element
number for the branches in the set B, can be defined as
follows:

Definition 2: The element number of the root in the set B,
is zero. The element number of a branch in the set B, fork=1
is a k-digit binary number i=(i,1, . . . 1, . . . i;), where i, is the
jth most significant digit. In this number, if the branch is a
high branch, i, is 1. If the branch is a low branch, i, is 0.
Similarly, if the branch’s ancestor in the jth recursion level is
ahighbranch, i, is 1, and if the ancestor is a low branch, i,
is 0.

Definition 3: For purposes of this disclosure, B, , denotes
the branch in the set B, with the element number i. Like any
other branch, B, , computes the product of its inputs as an
output. The product computed by this branch is denoted by
P,

The following proposition gives the inputs of the branches
in the set B, for the case in which the input length of the root
is specially chosen:

Proposition 1: Let n be the input size of the root such that
2%In for some integer k=0. Then, the inputs of B, are the
m-word numbers a™[im] and b™[im] where m=N/2*. Also, the
output of B, ; is the 2m word product P, ~a™[im]b™[im].

The proof for this proposition proceeds as follows. Con-
sider a branch in B, and its ancestors. The branches constitute
a path of low and high branches starting from the root. As
more fully explained below, these branches each have inputs
in the form of a™"#”[index], b**#”[index] for some integers
index and length. The low and high branches have, respec-
tively, the input pairs (a;, b;) and (a, b,;) generated by their
parent. These are the lower- and higher-order words, or sub-
arrays, of the parent’s inputs. Then, if a path starting from the
root always traverses low and high branches, the inputs of the
branches on this path will all be single subarrays of the root’s
inputs a and b. Thus, the inputs of these branches are a sub-
array of a and a subarray of b. Moreover, these subarrays have
the same index and length. This is because the first and the
second inputs are generated in Steps 2 to 7 in the same way,
exceptthat the former is generated from the words of a and the
latter is generated from the words of b.

The inputs in the form a’*#*[index], b"#”[index] can be
identified by their index and length parameters. In the remain-
ing part of the proof, these parameters are investigated for the
inputs of the branches in the special sets and the inputs of their
ancestors. Let 0=j=k. Then, ?In and the inputs are evenly
divided in half for each recursion level. Thus, the input length
of a branch in the jth recursion level is exactly n/2/ words.
Now, consider a branch in the set B, with the element number
i. As more fully explained above, its inputs and its ancestor’s
inputs can be given as a” 2j[indexj], b 2j[indexj] where
0=j=k and index; is some appropriate integer. These expres-
sions must yield the root’s inputs for j=0 (i.e., a”[index,|=a
and b”[index,|=b). Then, index,=0. The ancestor in the jth
recursion level is either a low or a high child of the one in the
(j=1D)th recursion level. Thus, its inputs are either the lower or
higher halves of the inputs of the one in the (j-1)th recursion
level. In the former case, index =index,_, . In the latter case,
indexj:indexj_ 1+10/2. Note that indexj:index o+ jn/ Y for
both cases where i, is the jth digit of the element number i.

US 7,401,109 B2

11

Using this equation, the following equality can be obtained:

& _ (13)
index;, = indexy + Z iin)2
=0

k

= indexy + [Z ijZk’j]n/Zk

J=1

= indexy + (iyiy -+ iy)ym

= indexg + im =

It can be seen from this equation that a™ 7 [index] and

b2 [index] yield a”[im] and b™[m] for j=k. Thus, the inputs
ofa branch in the set B, with the element numberi are a™[im]
and b™[im]. And, the output of this branch is the product
P, ~a[im]b™[im], and the proof is complete.

The following proposition describes the children of the
branches in the special sets for which the input length of the
root is a power of two.

Proposition 2: Let n be the input size of the root such that
2*n for some integer k=0. Consider the branch B,_ 1 Where
m=n/2*. For this branch, the low child is B 100 the hlgh child
is By 5,,,, and the mid child has the inputs la™[2im]-a™[(2i+
Dm]l and Ib™[(2i+1)m]-b™[2im]I.

The proof for this proposition proceeds as follows. Assume
that k—1>0. Definiton 1 implies that if a branch is in the set
B,_,, its low and high children are in the set B,. According to
Definition 2, the element number of such a branch is a (k-1)-
digit number and those of its children are k-digit numbers.
Note that the children and the parent share the same ancestry.
It follows from Definition 2 that the most significant k-1
digits are the same for the element numbers of a branch in
B, and its children in B,. Then, if the element number of the
branch is i, the element numbers of its children are 2i+i,
where i, is the least significant digit of these element numbers.
According to Definition 2, 1,=0 for the low child, and i,=1 for
the high child. It follows that the element numbers of the low
and high children are 2i and 2i+1, respectively, as stated in the
proposition above. Since the element numbers of these chil-
dren are known, their inputs can be found from Proposition 1.
The inputs of the low child are a,=a™[2im] and b,=b™[2im],
while those of the high child are a,=a™[(2i+1)m] and b,=b™
[(2i+1)m]. The inputs of the mid ch11d were defined above as
a,/~la;—agl and b,,~lb,~b,|. Substituting the values of a,,
b;,a,, and b, yields a,,~la”[2im]-a™[(2i+1)m]| and b, ~Ib™
[(2i+1)m]-b™[2im]l. Thus, the inputs of the mid child can be
written as in Proposition 2.

Itk-1=0, B,_, is B,, the set whose only element is the root.
The arguments in the proof are valid for this case as well,
except that the element number of the root is not, and cannot,
be a k—1=0 digit number. This condition, however, does not
affect the above proposition.

Every branch in the KOA has two inputs and computes
their product as an output. However, the branches in the KOA
do not compute the products of their inputs by directly mul-
tiplying them unless the branch is a leaf of the recursion tree.
Instead, the branches compute the products by appropriately
shifting and adding the recursively determined subproducts
computed by the branches’ children. This computation is
performed in Step 11 of the KOA function described above.
The equation in this step expresses the product computed by
abranch in terms of the subproducts computed by its children.
Using the equation in Step 11, the product of a branch can be
decomposed in terms of the special sets of branches described

30

35

40

45

50

55

60

65

12

above. The following proposition illustrates this decomposi-
tion for the case in which the input length of the root is
specially chosen to be an integer power of two:

Proposition 3: Let n be the input size of the root such that
2%n for some integer k=0. Then, we can decompose P,_ L
into subproducts as follows

P =42 (P o2 Pr 211 428 o5pmid (14)
where m=n/2%, mid=la™[2im]-a"[(2i+1)m]| 1b™[(2i+1)m]-
b™”[2im]l, and s, =sign(a™[2im]-a™[(2i+1)m]) and s,=sign
(b[(2i+1)m]-b™[2im]).

The proof ofthis proposition proceeds as follows. Consider
the branch B,_, ,. Because it is in the (k—1)th recursion level,
this branch has inputs of (n/2*"'=2m) words. According to
Definition 3, the branch computes the product P,_, ,. As can
be understood from the KOA function described above, the
productP,_, , can be decomposed into the following subprod-
ucts:

Py, ~low+(low+high+s,s, mid)z”+high 72" (15)
Note that the low and high children of B,_, ; are By ,, and
B ., according to Proposition 2. Also, note that B, ,, and
Bk’zl_+ compute the products P, ,, and P . Thus, the substi-
tutions low=P, ,, and high=P, ,,,, can be made in the above
equation. After these substitutions and a little bit rearrange-
ment, Equation (14) can be obtained.

As noted above, the low and high children are B, ,, and
B, 5:.1. Thus, according to Proposition 1, the inputs of the low
child are a,=a™[2im] and b, =b™[2im], while those of the high
child are a,=a™[(2i+1)m] and b,=b"[(2i+1)m]. Note that
mid=la,—a,l 1bgy-b,l, s,=sign(a,—a,), and s,=sign(b,~b,)
are defined above. Substituting the values of a,, b;, a,, and
b, the same definitions for mid, s,, and s, as in Proposition
14 can be obtained.

Alternate Methods of Multi-Precision Multiplication

In this section, new methods for multiplying multi-word
numbers are described. Although the methods are described
in terms of particular embodiments, the particular embodi-
ments discussed are not limiting and may vary in their imple-
mentation details.

In the KOA, a branch in some recursion level computes a
product and benefits from the computations performed by its
descendants in later recursion levels. This branch, however, is
completely independent from the other branches in the same
recursion level. FIG. 2 illustrates how the KOA calculates
independent paths during the multiplication operation. In par-
ticular, FIG. 2 shows how the KOA multiplies the operands
from FIG. 1. According to the KOA function described above,
the algorithm first determines the product of the low branch
126 at step 8. To perform this calculation, the KOA function
recursively calls itself to multiply “D1” and “A3” together.
Because the low, mid, and high children from branch 126 are
single-word products, the multiplication is performed using
classical methods at the leaves 137, 138, and 139. The prod-
ucts “82,”“=54. and “3,” respectively, are returned to branch
126 and combined in Step 11 of the recursive KOA function
to obtain the result “8513”. Because this result is obtained
before branches 122 and 124 are calculated, this path is des-
ignated as Path 1 in FIG. 2. According to the KOA function
described above, the high branch 122 is the next branch to be
calculated in Step 9, followed by the mid branch 124 in Step
10. These subsequent recursive operations are labelled as
Paths 2 and 3 in FIG. 2 and obtain their respective products in
a fashion similar to that of Path 1. The KOA function com-
bines the result from the branches 122, 124, 126 in Step 11,

US 7,401,109 B2

13
which provides that t:=low+(low+high+s,s,mid) z**+high
7", and returns the final product “67777A13.”

In some of the embodiments described below, computa-
tions that are performed by branches on independent paths of
the corresponding recursion tree are combined. In other
words, branches that do not have a common parent are com-
bined. In certain implementations, for instance, the branches
that are combined are those in the special sets defined above.

FIG. 3 is a flowchart of a general method 300 for multiply-
ing operands. At process block 310, operands a and b are
obtained and stored (e.g., in computer memory). In certain
embodiments, the operands a and b are evaluated and, if
necessary, stored as operands having n words, wherein nis an
integer that is a power of two. For example, operands a and b
may be manipulated such that they have n words. In one
particular implementation, for instance, one or both of the
operands from process block 310 are padded with zeros to
have n words. In process block 312, a first weighted sum is
determined. The weighted sum is comprised of multiple sub-
products that result from multiplying the words of operand a
with the words of operand b. As more fully described below,
the subproducts comprise computations from at least two
independent paths of the corresponding recursion tree. Thus,
the general method in FIG. 3 combines subproducts that are
obtained in independent paths of the KOA. In process block
314, another weighted sum is calculated. This weighted sum
is determined in part from a previously calculated weighted
sum and a subproduct resulting from a recursive call to the
general method 300. In the first iteration, the previously cal-
culated weighted sum is the first weighted sum from process
block 312. In subsequent iterations, however, the previously
calculated weighted sum may be the weighted sum from the
immediately previous iteration. In process block 316, a deter-
mination is made as to whether any further iterations are
necessary. This determination may depend on the word size of
the original operands a and b. If further iterations are required,
process block 314 is repeated. If no further iterations are
required, the weighted sum determined at process block 314
is the final product, and this value is returned at process block
318. The value may, for example, be returned to a user, stored
in memory, or used in further processing.

FIG. 4 is a flowchart showing an exemplary general
method 400 of performing the operation in process block 312
of determining a first weighted sum. At process block 410,
multiple subproducts are found by multiplying the individual
words of operand a with corresponding words from operand
b. As more fully described below, the corresponding words in
operand b may have the same position relative the radix as the
words in operand a. These subproducts may be obtained using
classical multiplication methods because they involve multi-
plying individual words. At process block 412, the multiple
subproducts from process block 412 are shifted into a prede-
termined alignment. For example, in one particular imple-
mentation, the subproducts are shifted by an amount related
to a power of the radix of the words. For instance, if the
hexadecimal words “3” and “C” from the input operands
“F3D1” and “6CA3” are multiplied, their product may be left
shifted by two words, or eight bits. This shift corresponds to
multiplying the result by the square of the radix (i.e., 16 or z*
for z=2"=2*). Once the subproducts have been shifted by the
appropriate amount, the subproducts are added together at
process block 414. Because of the shifting of process block
412, the sum obtained at process block 414 is not an ordinary
sum.

FIG. 5 is a flowchart showing an exemplary general
method 500 of performing the operation in process block 314
of determining a next weighted sum. At process block 510, a

20

25

30

35

40

45

50

55

60

65

14

shift is performed on the previous weighted sum. The amount
of the shift is related to the particular iteration being per-
formed. For example, in one implementation, the previous
weighted sum is shifted by n/2* where k=log, n and n is the
number of words in the operands being multiplied in that
particular iteration. Thus, for example, if the first iteration
involves multiplying operands “F3D1” and “6CA3.” then
k=log, 4=2, and the previous weighted sum (i.e., the first
weighted sum determined) is shifted by 4/2°=1. In process
block 512, an intermediate product is determined by a recur-
sive call to the general method 300 described in FIG. 3. In one
particular implementation, the intermediate product deter-
mined is (a;—az)(b;=b;), which corresponds to a mid branch
of the equivalent recursion tree. Because this is a recursive
step that may lead to further recursions, depending on the size
of'the operands, the values of the previous weighted sum can
be stored until the subsequent recursions return the value of
the desired intermediate product. In process block 514, the
next weighted sum is obtained by adding the previous
weighted sum, the shifted version of the previous weighted
sum obtained in process block 510, and the recursively deter-
mined intermediate product obtained in process block 512.
One exemplary embodiment 600 of the general method
300 is shown in FIG. 6 and discussed in greater detail below.
Generally speaking, the exemplary embodiment 600 uses
weighted sums of the subproducts computed by the branches
in each special set. These weighted sums are denoted by
sumP, for k=0 and their weights are the powers of z=2". The
definitions of sumP, for k=0 are described below.
Definition 4: Let n be the input size of the root such that
2%1n for some integer k=0. The value of sumP, is equal to the
following weighted sum of the products P , fori=0, .. ., 2%_1:

2k . (16)
sum P, = Z P,(,;z"("/2)

i=0

Note that i is a k-digit number. That is, 0=i=2*-1. This is
because i is the element number of B, .

It can be seen from Definition 16 that if the input size of the
rootis divisible by 2* (i.e., 2“In), sumP,, sumP,_,,...,sumP,,
sumP, are all defined. Among these weighted sums, sumP,, is
of particular interest because it equals the product computed
by the root P, :

20_; . (%)
sum Py = Z Poyiz"(”/z)

i=0

=Poo

The value of sumP,, is the final result of the multiplication.

In the KOA, the P, , fori=0, . . ., 2%-1 are computed by the
branches in B, individually. In the method of FIG. 6, however,
the products are not individually computed, but are included
in a weighted sum sumP,. In this way, computations per-
formed by the branches in B, are combined.

In process block 610 of FIG. 6, operands a and b are
obtained. In this embodiment, the input size of the root oper-
ands is limited to n words, where n is an integer divisible by
2. The operands may be padded with zeroes to obtain the
proper size. The recursion depth is given by log, n, and sumP,.
can be defined for all recursion levels k from O to log, n.

In process block 612, a weighted sum sumP,,, , is deter-
mined in terms of the inputs of the root. The following propo-
sition describes sum,,,, ,;:

US 7,401,109 B2

15

Proposition 4: Let the root have the inputs a and b. Let the
size of these inputs be n=2" where k, is some integer. Then,
sumP,,,, ,,=sumP, is the following weighted sum:

n—

sum Plogy, = Z ali] + blilZ

1 (18)
=0

The proof of this proposition proceeds from Definition 16,
which provides:

o1 .
sumPy, = Z P,(OV‘_Z‘("/2 0)
i=0

n—1
_ i
= Z Pig;2
=0

From Proposition 1, it can be shown that P, =a™[im]*b™
[im] where m=n/2*. For k=k,, m=n/2*=1. Thus, P, =ali]*b
[i]. ’

In process blocks 613-617, an iterative process is per-
formed that results in the product of a and b. In the embodi-
ment shown in FIG. 6, the number of'iterations k performed is
log, n, which is set at process block 613. At process block
614, a weighted sum sumP,_, is determined from sumP, (i.e.,
the previously calculated weighted sum). At process block
616, a determination is made whether k equals, and thus
whether sumP has been calculated. If not, then the value of k
is decremented by one at process block 617 and process block
614 isrepeated. Ifkis 1, then sumP,, is assigned as the product
of a and b. The relationship between the iterations can be
defined by the following proposition:

Proposition 5: Let n be the input size of the root such that
2*1n for some integer k=0. Then, sumP,_, is related to sumP,,
according to the following equation:

sk-1_y (19)
sumPy_y = (1 + 7 sumPy + Z Salisy(Dmid(Hz®m

i=0

where m=n/2%, mid(i)=la"[2im]-a"[(2i+1)m]l b™[(2i+1)
m]|-b™[2im]l, and s,(i)=sign(a™[2im]-a™[(2i+]1)m]) and
s,(1)=sign(b”[(2i+1)m]-b™"[2im])

The proof of Proposition 19 proceeds from Definition 16,
from which the following equation can be obtained:

k-1_y

2
= Z Py
i=0

Sk-1_p 20)
sumbPy_; = Z Pk—l,izi("/zkil)

i=0

Substituting the right hand side of the Equation (14) into
P,_, .inthe above equation gives:

2kl @b
sumPy_y = Z [(L +2M(Pri + 2" Pipiet) + 2 saspmid 22"
0
K-l
=({+zZ" Z (@M Py + 2P gi) +
iz0

20

25

30

35

40

45

50

55

60

65

16

-continued
%1y

Z SasbmidZ(Ziﬂ)m
i=0
%1 2k-1y

=(l+ z’")Z P+ Z SpSpmidgFrim

=0 =0

2k—1_y
= (1 + Z")sumPy + Z SaspmidgZTbm
=0

Note that s, s,, and mid in the proposition above are as
given in Proposition 3. They are also functions of i, as
described in the Equation (19).

During the computations, sumP, may need to be stored.
The size of this multi-word number is given in the following
proposition:

Proposition 6: Let n be the input size of the root such that
2%1n for some integer k=0. Then, the multi-word number
sumP, is of n+m words where m=n/2".

The proof of Proposition 6 proceeds from Definition 16,
which shows that P, , is weighted by powers of z. The largest
power of z is (2°~1)n/2"=n-m. Thus, sumP, has at least n—-m
words. Each power of z multiplies one of the products P, .
Thus, the size of sumP, is n—m plus the size of P, ,. The size
of P, , is 2m words because it is the product of the m word
numbers as shown in Proposition 1. Accordingly, sumP, is
n+m words.

At process block 618, sumP,, (the product of the operands
a and b) is returned.

The embodiment described in FIG. 6 may be implemented
according to the following algorithm. Because the word size
n of the operands in the disclosed algorithm is a power of two,
the algorithm is referred to as “KOA2*” for convenience. The
output t is the 2n-word product of the inputs. During the
operation of the algorithm, sumP, is stored in the words of't
from t[a] to t[2n-1]. Note that sumP, is n+m words. Conse-
quently, a=2n—(n+m)=n-m. The algorithm KOA2* may be
defined as follows:

function: KOA2¥(a, b : n-word number; n : integer)
t : 2n-word number
a, m : integer
ay; : m-word number /* max(m) = /2 */
mid : 2m-word number
begin
/* When the input size is one word */

Step 1: ifn=1thenreturnt:=a*b
/* Initialization */
Step 2: m:=1; a=n-m
/* Compute sumP; 5" */
Step 3: (C, S) :=a[0] * b[0]
Step 4: tla] =S
fori=1ton-1
Step 5: (C, S):=a[i] *b[i]+C
Step 6: tla+i] =S
endfor
Step 7: tfa+n]:=C
/* Compute sumPy */
fork =log,"to 1
Step 8: t"[a - m] = t"[a]
Step 9: t"[a] =t"[a] + t"[a + m]
Step 10: c:=0; b:=0
fori=0to2x -1
Step 11: (b,, ayy) = a™[2im] - a™[(2i + 1)m]
Step 12: (b, byy) = b™[(2i + 1)m] — b™[2im]
Step 13: ifb, = 1 then ay; := NEG(ay;)

Step 14: if by, = 1 then by := NEG(byy)

US 7,401,109 B2

17
-continued
Step 15: mid := KOA (ays, by, m)
Step 16: ifb, = b, then
Step 17: (¢, 2™[a + 2im]) := t**[a + 2im] + mid + ¢
Step 18: (b, 2™[a + 2im]) := P™[a + 2im] - b
Step 19: if b, = b, then
Step 20: (b, 2™ + 2im]) := 2™[a + 2im] - mid - b
Step 21: (¢, 2™[a + 2im]) := t**[a + 2im] + ¢
endfor
Step 22: m = 2m; a=n-m
endfor
return t

end

In Step 1, n is evaluated. If n is one (i.e., if the inputs are
single words), the inputs are directly multiplied and the result
returned. Otherwise, the algorithm continues with the
remaining steps. Step 2 initializes the variables m and a. In
Steps 3 to 7, sumP,, 2, which equals

5
iR

ali] =blilZ

i
o

according to Proposition 4, is computed. The result is stored
in the words t[ct] through t[a+n] of the output array t, where
a=n-m=n-1. The product a[i]*b[i] fori=0, .. .,n-1yields a
two-word result (C, S). C and S are the most and least signifi-
cant words, respectively. Because this product is multiplied
by Z, S is added to t[a+i] and C to tfa+i+1].

In Steps 8 to 22, sumP,_, is obtained from sumP, itera-
tively. These steps are inside a loop running from k=log, n to
k=1. Because m=1/2%, m is multiplied by 2 in Step 22 after
each iteration. In this step, it is ensured that a=n-m. At the
beginning of each iteration, sumP, is available in the words of
t from t[] through t[2n-1].

The value of sumP,_, is computed in the manner shown in
Equation (19). In Steps 8 and 9, (1+z™)sumP, is computed
and the result stored into the words from t[a-m] through
t[2n-1]. This result is added to

k-l

D salidsy(imid(i

i=0

to obtain sumP,_,. The steps from 10 to 21 perform this
operation using two’s-complement arithmetic.

In steps 11 to 15, the 2m-word mid(i) is computed and
stored into mid. The value of mid(i) is defined in Proposition
5. According to this definition, two subtractions are per-
formed in Steps 11 and 12. After the subtractions, the m-word
numbers a,,and b, are obtained with the borrow bits b, and
b,. Notethatb,=s (i) and b,=s,(i). Steps 13 and 14 ensure that
a,,and b,, are equal to the magnitudes of the subtractions in
Steps 11 and 12. Finally, a,,and b, are multiplied in a recur-
sive call at Step 15 to obtain mid(i).

Recall that multi-word number (1+z")sumP, has been
computed and stored into the words of't. In Steps 16 to 21, this
number is added with s (i)s, (1)mid(i) z***"™. Because these
steps are in a “for loop” counting from i=0 to 2511,

20

25

30

35

40

45

50

55

65

18

2kl
sumPy_y = (L + Z")sumPy + Z sg(D)sp(mid(i)zFm
=0

In Step 16, the borrow bits b, and b, are evaluated. Ifb =b,,
s (D)s ,()mid(i)=mid(i), the value of mid(i) z*** " is added to
(14z™)sumP,. This operation is accomplished in Step 17. In
this step, mid(i) is contained in mid, and (1+z")sumP,, is
contained in the words from t[a—-m] to t[2n-1]. Because
mid(i) is 2m words and multiplied by z*™, mid is added to
the 2m-word subarray t*”[o—m+(2i+1)m]=t>""[c.+2im].

Ifb=b,, s,(i)s,(1)mid(i)=-mid(i), and the value of mid is
subtracted instead of added, as seen in Step 20. These addi-
tions and subtractions yield the borrow bit b and the carry bit
c. These bits should be propagated in both cases. In Step 10,
these bits are set to zero.

After these iterations have been performed, sumP, is
obtained in the Oth to (2n-1)th words of t. As noted above,
sumP, is the final result of the algorithm and constitutes the
product of a*b.

Complexity of KOA2*

In this section, the complexity of the exemplary KOA2*
algorithm described in the previous section is analyzed. In the
complexity analysis, the cost of the carry and borrow bit
manipulations are ignored, as they were in the previous com-
plexity analysis.

Table 3 gives the numbers of word operations, word reads
and word writes needed for input lengths n>1. Specifically,
the first, second, and third columns give the number of word
operations, memory reads, and memory writes, respectively.
In Steps 3 to 7, the

TABLE 3

The complexity of a call to KOA2* with an
input lengthn > 1.

Step No operation read write
3,4,5,6,7 nT(1)+2n-2
8 n-1 n-1
9 nlog,n 2nlog,n nlog,n
11 n nlog,n n
3 log,n zlogzn
12 n nlog,n n
3 log,n Elogzn
13,14 n n n
3 log,n zlogzn Elogzn
15 recursions
17,20 nlog,n 2nlog,n nlog,n
18,21 nlog,n nlog,n nlog,n
Total nT(1) +16.5 nlogon +4n — 4

words of a and b are read, multiplied, and stored into the
words of t. The cost of these operations are included in T(1),
and there are n multiplications in these steps. Thus, the total
cost is nT(1) due to the multiplications. Also, the addition in
Step 5 must be taken into account. This is a two-word addition
operation in a loop iterating n—1 times. Thus, it costs a total of
(2n-2) word operations. It is assumed that C and S in the steps
from 3 to 7 are register variables. Thus, the cost of accessing
them is not taken into account.

US 7,401,109 B2

19

In Step 8, there exists a (m=n/2")-word assignment in a
loop iterating log, n times. This results in a total of

word assignments. In Step 9, the addition of the n word
numbers occurs in the same loop. Thus, Step 9 costs a total of
n log, n word additions.

Steps 11 to 21 are performed in two loops. The first loop
iterates log, n times, and the second loop iterates 2°~* times.
Steps 11 to 14 perform operations on m-word numbers. Thus,
(m2*~* log, n)=(n/2) log, n word operations are needed to
perform each of these steps. On the other hand, Steps 17 to 21
perform operations on 2m-word numbers. Thus, (2m2*~* log,
n)=n log, n word operations are needed to perform each of
these steps.

According to the previous paragraph, Table 3 gives the
number of the word operations as (1/2) log, n for Steps 11 to
14. However, the situation is different for Steps 13 and 14.
The m-word negation operations in these steps are condition-
ally executed, and it is assumed that their execution probabil-
ity is %5. Thus, their total complexity equals the complexity of
one m-word negation on average, as shown in Table 3.

As seen in Table 3, a single value for the complexity of
Steps 17 and 20 is computed. Similarly, a single value is used
for Steps 18 and 21. This is because either Steps 17 and 18 or
Steps 20 and 21 are executed, depending on the condition
b,=b,. InSteps 17 and 20, there exists two word reads and one
memory write for each word operation. In Steps 18 and 21,
there exists one word read and one memory write for each
word operation. As noted above, performing each ofthe Steps
17 through 21 takes n log, n word operations.

The recursion occurs in Step 15. The recursive call in this
step has (m=n/2")-word inputs and is in two “for” loops. As
shown below, the complexity T(n) satisfies the recurrence:

togyn (22)
T =y 21T /2" + Totaln)

k=1

where Total(n) is the total number operations, reads, and
writes given in Table 3 (i.e., nT(1)+16.5nlog, n+4n-4). This
recursion equation may be simplified as follows:

logp (n/2)
T(n/2) = Z 2=1T(n /2 /2%) + Total(n /2)
k=1

@23

logyn—1
=(1/2) Z 2 T(n j 261y + Total(n/2)
k=1

logpn
= (1/2)2 261 (5 f2%) + Total(n/2)
k=2

20

Next, consider the following subtraction:

logyn (24)
5 T(n) = 2T(n/2) = Z 217 (n /2%) + Total(n) —
k=1
loggn
Z 2=1p(n /2%) ~ 2Total(n/ 2)
k=2
10
After cancellations:
15 1 (25)
T(n)=2T(n/2) = Z 271 T(n /2%) + Total(n) — 2Total(n/2)
k=1
=T(n/2) + Total(n) + 2Total(n/2)
20

The{efore, the following recurrence for the algorithm
KOA2 can be obtained:

T(n) = 3T(n/2) + Total(n) — 2Total(n /2) (26)

25
=3T(/2) + 165n+4

The recurrence relation above is similar to the recurrence
relation of the KOA. Recall that the recurrence relation for the
KOAcomp function described above is:

30

T(n)y=3T(n/2)+1%

35 The solution for the recurrence relation is given in Equa-

tion (11). The complexity T(n) is O(n'-*®) in this solution.
Equation (26) can be solved in the same fashion to find the
complexity of the KOA2%, which is again O(n'->*). However,
because 16.5n+4<19n for n>1, the KOA2” is less complex

40 than the KOA.

Recursivity of KOA2*
Let r(n) be the number of the recursive calls needed to
multiply the n-word numbers by the KOA2* The KOA2*

45 . - . .
makes 2°! recursive calls with the (m=n/2%)-word inputs in a

loop iterating from k=1 to log, n. The following recurrence
therefore results:
30 logon logon 27
r(n) = Z 2kt Z 2471 (28
k=1 k=1
logon
=n—l+ 3 20rn/2
55 k=2
This recursion equation may be simplified as follows:
60
logp (1/2) (28)
/) =n/2—1+ Z 2L p(n 2128
k=1
logyn-1
65 =n/2-1+(1/2) Z ep(n [26+

k=1

US 7,401,109 B2

21

-continued

logyn

=n/2-1 +(1/2)Z 2y f2K)
k=2

Next, consider the following subtraction:

r(n)=2r(n/2) = 29

logyn

n-l+ Z 22y =2+ Z 2k (1 2K)

k=1 k=2

logyn

After cancellations:

1 30)
) —2rn/2) = 1 + Z 261y /24

k=1

=14+3rn/2)

The following recurrence is eventually obtained:

rim)=1+3r(n/2) 3D

=1 4+3+. 4374 35D

=143+, +3 =3 -D/2

In Equation (12), it was found that the recursivity of the KOA
was 3(3%-~1)/2. Therefore, the KOA2F algorithm is three times
less recursive than the KOA.

An Example of Multiplication Using KOA2*

The operation of the algorithm KOA2* is illustrated in the
following example and FIGS. 7 through 11. FIGS. 7 through
11 illustrate the operation of the KOA2* algorithm by relating
it to the recursion tree of FIG. 1. In this example, two numbers
“F3D1” and “6CA3” are multiplied together. Both numbers
comprise four hexadecimal values, which can be associated
with four 4-bit words. Thus, the operand size is n=4, and the
word size is w=4. Note that the operand size is a power of two.
Let adenote F3D1 and a[i] denote the ith digit of F3D1. Also,
let b denote 6CA3 and b[i] denote the ith digit of 6CA3.

The First Weighted Sum

In Steps 3 to 7, sumP
Proposition 4, sumP

rog, - SUMP,; is computed. As stated in

10g” 18 €qual to

5
iR

ali]=b[ilZ.

i
o

20

25

30

35

40

45

55

60

65

22
Thus,

a/OT*b[01=1%3=03 af1]*b[1]=D*4=82

a[21*b[2]=3%C=24 a[3]*b[3]=F*6=54

Multiplication by z=2" is equivalent to a 1-word shift.
Thus, sumP, is found as follows:

03
82
24
+ SA
" sumP, = 5CC23

FIG. 7 illustrates these steps in terms of the corresponding
recursion tree. As seen in FIG. 7, the four products that are
added in the weighted sum sumP, correspond to branches
131,133,137,139. Branches 131, 133, 137, 139 are leaves of
the recursion tree and belong to the special set described
above consisting of low or high branches with no mid-branch
ancestors. Moreover, the amount of shifting performed on
each subproduct before obtaining the weighted sum is related
to the positions of the multiplied words relative to the radix.

The Iterative Steps

Steps 8 to 22 are inside a “for loop”. This loop implements
the iteration in Equation (19). In the first iteration of the loop,
sumP; is computed from sumP,. In the second iteration,
sumP, is computed from sumP; .

Steps 8 and 9 (1st Iteration)

In Steps 8 and 9, the term (1+z”")sumP;, in Equation (19) is
computed. In the first iteration, k=log,—2 and m=n/2"=1. The
term (1+z)sumP, is obtained by shifting and adding sumP,
with itself.

5¢cC23
+ 5CC230
628E53

Steps 11 to 15 (1st Iteration)
In Steps 11 to 15, the terms s (i)s,(i)mid(i) z**"" in
Equation (19) for i=0, . .., 2*"*-1 are computed.

5a(0)sp(0mid(D)z™ = (al0] — al11)(B[1] - £[0])z™
=(1=D)(A=3)g" = =54 7" = =540
Sa(Dsp(Dmid(1)z™™ = (a[0] - al1DI1] - b0

=(B3=F)(6- 0™ =48 22" = 48000

Steps 16 to 21 (1st Iteration)

Once every term in iteration relation (19) has been com-
puted, the weighted sum sumP, can be obtained by adding the
terms as follows:

628E53
-540

+48000

SumPy =670913

US 7,401,109 B2

23

FIG. 8 illustrates these steps in terms of the equivalent
recursion tree. As seen in FIG. 8, the two additional subprod-
ucts that are added in the weighted sum sumP, correspond to
branches 132, 138. Moreover, branches 132, 138 correspond
to the mid-branch children from the high branch 122 and the
low branch 126. The amount of shifting performed on each
subproduct 132, 138 is related to the position of the subprod-
ucts within the recursion tree.

Steps 8 and 9 (2nd Iteration)

In the second iteration, k=log,~~1 and m=n/2*=2. Thus,
(1+z=)sumP,=(1+z%)sumP, is computed. For this, sumP, is
shifted and added to itself as shown below.

670913

+ 67091300
67701C13

Steps 11 to 15 (2nd Iteration) _
For k=1 and m=2, s (i)s,(i)mid(i) z**"™ is computed for
i=0,..., 21

5a(0)sp(0)mid(0)2" = (@*[0] - & 2B [2] - L [O])2™"
= (D1 - F3)(6C — A3 (=22)(=33)7>"

= T4Ez*" = TAE00

To compute the product of (-22)(-37), Step 15 includes a
recursive call to the KOA2F algorithm. The details of this
recursive call are omitted from the above equation, but are
shown in FIG. 9. In particular, FIG. 9 shows that s°(0)s,(0)
mid(0)z” corresponds to branch 124 from the equivalent
recursion tree in FIG. 1. Thus, to determine the product of
(=22)(-37), the KOA2" is performed with a=22 and b=37,
where s,(0) and s,(0) ensure the proper sign of the result. In
process block 700, the weighted sum sumP, is calculated
using the products from branches 134, 136. Then, in order to
calculate the next weighted sum sumP,, the value of mid(0) is
determined at process block 702. As seen from process block
702, the value of mid(0) in this case is zero. At process block
704, the weighted sum sumP,, is determined according to
Equation (19). The result of the weighted sum is “74E,” which
is returned for use in Steps 16 to 21 of the earlier iteration.

Steps 16 to 21 (2nd Iteration)

At this point, every term in the iteration relation (19) has
been computed for k=1 and m=2. Adding these terms, sumP,,
is obtained as follows:

67701C13
+ T4E00
sumPo=677T76A13

sumP, is the result of the multiplication.

FIG. 10 illustrates the computation of the weighted sum
sumP, and the result “67776A13.” Note that the final result is
the same as the one shown in FIG. 2 illustrating the KOA.

Applications of KOA2F

The methods described above may be used in a variety of
different applications wherein multiplication of multi-preci-
sion numbers is performed. For example, the methods may be
used in a software program that performs arbitrary-precision
arithmetic (e.g., Mathematica) or in other specialized or gen-

20

25

30

35

40

45

50

55

60

65

24

eral-purpose software implementations. Additionally, the
methods may be used in the field of cryptography, which
often involves the manipulation of large multi-precision num-
bers. For example, the methods may be used to at least par-
tially perform the calculation of a variety of different crypto-
graphic parameters. These cryptographic parameters may
include, for instance, a public key, a private key, a ciphertext,
a plaintext, a digital signature, or a combination of these
parameters. Cryptographic systems that may benefit from the
disclosed methods and apparatus include, but are not limited
to, systems using the RSA algorithm, the Diffie-Hellman key
exchange algorithm, the Digital Signature Standard (DSS),
elliptic curves, the Elliptic Curve Digital Signature Algorithm
(ECDSA), or other algorithms. In one particular implemen-
tation, the methods are used, at least in part, to generate and
verify a key pair or to generate and verify a signature accord-
ing to the ECDSA. For example, the methods may be used to
compute Q=dG during the key-pair generation process,
wherein Q is a public key, d is a private key, and G is a base
point. Moreover, the methods may be used to verify that
nQ=0 during the key pair verification process, wherein n is
the order of the point G, and O is the point at infinity of the
elliptic curve. Similarly, the methods may be used to compute
kG=(x,, y,), wherein k is a random or pseudorandom integer
and (x,,y,) are points on an elliptic curve. The methods may
similarly be used to calculate the related modular, inverse
modular, and hash functions during the signature generation
and verification processes.

Any of the methods described above may be implemented
in a number of different hardware and/or software environ-
ments. FIG. 11 shows a block diagram of one exemplary
general hardware implementation. More particularly, FIG. 11
shows a multiplying apparatus 800 (e.g., a computer) that
includes a processor 810 (e.g., a microprocessor), memory
812 (e.g., RAM or ROM) and an input data path 814. The
multiplication algorithm may be stored in the memory or on
a computer-readable medium (e.g., hard disk, CD-ROM,
DVD, floppy disk, RAM, ROM) that is separate from the
memory 812 and that is accessed by the processor 810 before
or during execution of the algorithm. During operation, the
input operands may be supplied via the input data path 814 or
by the memory 812. The processor 810 and the memory 812
are coupled together via the data paths 816, which enable the
various read and write operations performed during the algo-
rithm. The final product computed by the processor 810 may
be output from the processor on output data path 816 or stored
in the memory 812 for later use. The details of this general
hardware implementation are omitted.

The disclosed methods may also be implemented in dedi-
cated digital circuits configured to perform multi-precision
multiplication. For instance, FIG. 12 shows a circuit 820 that
includes a multiplying circuit 830 (e.g., combinational logic
and sequential memory elements) configured to perform the
multi-precision multiplication. Two inputs 832, 833 may be
used to input the operands a and b. Alternatively, the operands
may be input sequentially via a single input, or in parallel via
multiple input paths. The circuit 820 may be clocked to load
the operands and to perform the multiplication operation. The
result of the multiplication may be output on data path 834.
The circuit 820 may be, for instance, a printed circuit board
(PCB), a smart card, a field programmable gate array
(FPGA), afield programmable system level integrated circuit
(FPSLIC), an integrated circuit used in a System on Chip
environment (SOC), or any other type of integrated circuit
suited for implementing the algorithms described above.

As noted, the disclosed methods may be used in cryptog-
raphy to help compute a variety of cryptographic parameters

US 7,401,109 B2

25

using multi-precision multiplication. FIG. 13 shows a block
diagram of general cryptographic apparatus 840 that may be
used to multiply two operands to produce a cryptographic
parameter. The apparatus 840 includes a cryptographic pro-
cessor 850 used to perform the algorithm; memory 852 used
to store the operands, the intermediate results, and computer-
executable instructions for performing the algorithm; and an
input data path 854. The apparatus 840 operates much like the
apparatus described in FIG. 11, but produces a cryptographic
parameter at its output 856. The cryptographic parameter may
be related to or constitute a portion of a public key, private
key, ciphertext, plaintext, digital signature, or some combi-
nation thereof. The parameter may also constitute a number
of other values used in cryptography. The cryptographic
apparatus 840 may be included in a variety of security appli-
cations. For instance, the apparatus 840 may be included in a
secure transaction server used for financial transactions, con-
fidential record storage, SmartCards, and cell phones. The
dedicated circuit shown in FIG. 12 may similarly be imple-
mented as part of a dedicated cryptographic system.

In view of the many possible implementations, it will be
recognized that the illustrated embodiments include only
examples and should not be taken as a limitation on the scope
of'the disclosed technology. Instead, the invention is intended
to encompass all alternatives, modifications, and equivalents
as may be included within the spirit and scope of the technol-
ogy defined by the following claims.

What is claimed is:
1. A method of generating a cryptographic key pair, com-
prising:
receiving a private key;
receiving a base point, the private key and the base point
comprising multi-precision numbers having n words,
where n is an integer that is a power of two and is greater
than one; and
multiplying the private key by the base point to obtain a
multi-precision number associated with a public key, the
multiplying comprising:
storing the base point as a first array of n words, and
storing the private key as a second array of n words;
determining a first weighted sum from multiple sub-
products of corresponding words of'the first array and
the second array;
iteratively determining a next weighted sum from a pre-
vious weighted sum, a shifted version of the previous
weighted sum, and a recursively calculated interme-
diate product; and
storing the next weighted sum on a computer-readable
medium.
2. A digital signature process, comprising:
receiving a first cryptographic parameter and a second
cryptographic parameter, each cryptographic parameter
being a multi-precision number having n words, where n
is an integer that is a power of two and is greater than
one; and
multiplying the first cryptographic parameter by the sec-
ond cryptographic parameter, the multiplying compris-
ing:
storing the first cryptographic parameter as a first array
of n words, and storing the second cryptographic
parameter as a second array of n words;
determining a first weighted sum from multiple sub-
products of corresponding words of the first crypto-
graphic parameter and the second cryptographic
parameter,

20

25

30

35

40

45

50

55

60

65

26

iteratively determining a next weighted sum from a pre-
vious weighted sum, a shifted version of the previous
weighted sum, and a recursively calculated interme-
diate product; and

storing the next weighted sum on a computer-readable
medium.

3. The method of claim 2, wherein the digital signature
process is signature generation or signature verification asso-
ciated with an elliptic curve digital signature.

4. An integrated circuit having combinational logic and
memory elements configured to perform a cryptographic
method, the cryptographic method comprising:

receiving a first operand and a second operand;

storing the first operand as a first array of n words, and

storing the second operand as a second array of n words,
wherein n is an integer that is a power of two and is
greater than one;

determining a first weighted sum from multiple subprod-

ucts of corresponding words of the first operand and the
second operand;

iteratively determining a next weighted sum from a previ-

ous weighted sum, a shifted version of the previous
weighted sum, and a recursively calculated intermediate
product; and

outputting a cryptographic parameter calculated at least in

part from the next weighted sum.

5. The integrated circuit of claim 4, wherein the integrated
circuit is a field programmable gate array.

6. A computer-readable medium, comprising computer-
executable instructions which when executed will cause a
computer to perform a cryptographic method, the crypto-
graphic method comprising:

receiving a first operand and a second operand;

storing the first operand as a first array of n words, and

storing the second operand as a second array of n words,
wherein n is an integer that is a power of two and is
greater than one;

determining a first weighted sum from multiple subprod-

ucts of corresponding words of the first operand and the
second operand;

iteratively determining a next weighted sum from a previ-

ous weighted sum, a shifted version of the previous
weighted sum, and a recursively calculated intermediate
product; and

outputting a cryptographic parameter calculated at least in

part from the next weighted sum.

7. A cryptographic method comprising:

storing a first operand and a second operand as n words on

a computer-readable medium, wherein n is an integer
that is a power of two;

determining multiple subproducts by multiplying words of

the first operand with words of the second operand,
wherein the multiplied words have the same respective
positions within the respective operands;

shifting the multiple subproducts by an amount corre-

sponding to the respective positions of the multiplied
words within the respective operands;

adding the shifted subproducts to obtain a weighted sum;

and

outputting a cryptographic parameter calculated at least in

part using the weighted sum.

8. The method of claim 7, wherein n is an integer greater
than one, the method further comprising performing at least
one iterative computation in which the weighted sum is an
addend.

9. The method of claim 8, wherein a number of iterative
computations performed is log,n.

US 7,401,109 B2

27

10. The method of claim 7, wherein n is an integer greater
than one, and wherein the weighted sum is a first weighted
sum, the method further comprising calculating a second
weighted sum in which the first weighted sum is an addend.

11. A method of generating a cryptographic key pair, com-
prising:

receiving a private key;

receiving a base point, the private key and the base point

comprising multi-precision numbers having n words,
where n is an integer that is a power of two; and

multiplying the private key by the base point to obtain a

multi-precision number associated with a public key, the

multiplying comprising:

storing the base point and the private key as n words on
a computer-readable medium;

determining multiple subproducts by multiplying words
of the base point with words of the private key,
wherein the multiplied words have the same respec-
tive positions within the base point and the private
key;

shifting the multiple subproducts by an amount corre-
sponding to the respective positions of the multiplied
words within the base point and the private key;

adding the shifted subproducts to obtain a weighted
sum; and

storing the weighted sum on the computer-readable
medium.

12. A signature generation or signature verification pro-
cess, comprising:

receiving a first cryptographic parameter and a second

cryptographic parameter, each cryptographic parameter
being a multi-precision number having n words, where n
is an integer that is a power of two; and

multiplying the first cryptographic parameter by the sec-

ond cryptographic parameter, the multiplying compris-

ing:

storing the first cryptographic parameter and the second
cryptographic parameter as n words on a computer-
readable medium;

determining multiple subproducts by multiplying words
of'the first cryptographic parameter with words of the
second cryptographic parameter, wherein the multi-
plied words have the same respective positions within
the respective cryptographic parameters;

shifting the multiple subproducts by an amount corre-
sponding to the respective positions of the multiplied
words within the respective cryptographic param-
eters;

adding the shifted subproducts to obtain a weighted
sum; and

storing the weighted sum on the computer-readable
medium.

13. The method of claim 12, wherein the signature genera-
tion or signature verification is associated with an elliptic
curve digital signature.

14. An integrated circuit having combinational logic and
memory elements configured to perform a cryptographic
method, the cryptographic method comprising:

storing a first operand and a second operand as n words on

a computer-readable medium, wherein n is an integer
that is a power of two;

determining multiple subproducts by multiplying words of

the first operand with words of the second operand,
wherein the multiplied words have the same respective
positions within the respective operands;

10

20

25

30

35

40

45

50

55

60

65

28

shifting the multiple subproducts by an amount corre-
sponding to the respective positions of the multiplied
words within the respective operands;

adding the shifted subproducts to obtain a weighted sum;

and

outputting a cryptographic parameter calculated at least in

part using the weighted sum.

15. The integrated circuit of claim 14, wherein the inte-
grated circuit is a field programmable gate array.

16. A computer-readable medium, comprising computer-
executable instructions which when executed will cause a
computer to perform a cryptographic method, the crypto-
graphic method comprising:

storing a first operand and a second operand as n words on

a computer-readable medium, wherein n is an integer
that is a power of two;

determining multiple subproducts by multiplying words of

the first operand with words of the second operand,
wherein the multiplied words have the same respective
positions within the respective operands;

shifting the multiple subproducts by an amount corre-

sponding to the respective positions of the multiplied
words within the respective operands;

adding the shifted subproducts to obtain a weighted sum;

and

outputting a cryptographic parameter calculated at least in

part using the weighted sum.

17. A cryptographic method, comprising:

obtaining a first operand a and a second operand b;

storing the operands a and b as n words, n being an integer

that is a power of two and that is greater than 1, wherein
the operands a and b can be written in radix z as

1 n—1
alilZ and b =" blild,

i=0

n

a=

I
=3

i

whereiis an index integer and a[i] indicates the ith word in the
operand a and b[i] indicates the ith word in the operand b;
computing sumP;, ,, wherein sumP,,_ ,, is equal to

storing sumP;,. ,,;
iteratively computing sumP,_,; from sumP, for k=log,n to
k=1, wherein:

%1y
sumPy_y = (1 + ") sumP, + Z 5o (Dsp (Dmid(HZ¥+m
=0

wherein m=n/2*, and
mid()=1a" [2im]-a" [(2i+1)m]| b [(2i+1)m]-b"[2im]|
s, (i)=sign(a™[2im]-a"[(2i+1)m]), and
sy()=sign(b™[(2i-+1)m]-b"[2im]); and

outputting a cryptographic parameter calculated at least in
part using sumP,_;.

US 7,401,109 B2

29

18. The method of claim 17, further comprising returning
sumP,,.

19. The method of claim 17, wherein anumber of iterations
is log,n.

20. A method of generating a cryptographic key pair, com-
prising:

receiving a private key;

receiving a base point, the private key and the base point

comprising multi-precision numbers having n words,
where n is an integer that is a power of two; and

multiplying the private key by the base point to obtain a

multi-precision number associated with a public key, the
multiplying being performed according to the method of
claim 17.

21. A signature generation or signature verification pro-
cess, comprising:

receiving a first cryptographic parameter and a second

cryptographic parameter, each cryptographic parameter
being a multi-precision number having n words, where n
is an integer that is a power of two; and

multiplying the first cryptographic parameter by the sec-

ond cryptographic parameter using the method of claim
17.
22. The method of claim 21, wherein the signature genera-
tion or signature verification is associated with an elliptic
curve digital signature.
23. A field programmable gate array configured to perform
the method of claim 17.
24. An integrated circuit having combinational logic and
memory elements configured to perform the method of claim
17.
25. A computer-readable medium, comprising instructions
for performing the method of claim 17.
26. A cryptographic method, comprising:
receiving a first operand and a second operand;
storing the first operand as a first array of n words, and
storing the second operand as a second array of n words,
wherein n is an integer that is a power of two;

determining multiple subproducts by multiplying words of
the first operand with corresponding words of the second
operand, wherein at least two of the subproducts corre-
spond to independent branches of a corresponding
recursion tree, wherein the corresponding words of the
second operand have a same position relative to a radix
point as the words of the first operand;

combining the subproducts into a weighted sum, wherein

the subproducts included in the weighted sum are mul-
tiplied by a power of a related radix and the power is
determined by the position of the multiplied words
within respective operands; and

outputting a cryptographic parameter based at least in part

on the weighted sum.

27. The method of claim 26, wherein the independent
branches are low or high branches that have no mid-branch
ancestors from the equivalent recursion tree.

28. The method of claim 26, wherein n is an integer greater
than one, and wherein the weighted sum further includes a
recursively calculated mid branch from the equivalent recur-
sion tree.

29. A field programmable gate array configured to perform
the method of claim 26.

w

15

20

25

30

35

40

45

50

55

60

30

30. An integrated circuit having combinational logic and
memory elements configured to perform the method of claim
26.
31. A computer-readable medium, comprising instructions
for performing the method of claim 26.
32. A cryptographic method, comprising:
receiving a first operand and a second operand;
storing the first operand and the second operand as a first
and a second array, respectively, of n words, whereinn is
an integer that is a power of two and is greater than one;

determining a first weighted sum from multiple subprod-
ucts of corresponding words of the first operand and the
second operand;

iteratively determining a next weighted sum from a previ-

ous weighted sum, a shifted version of the previous
weighted sum, and a recursively calculated intermediate
product; and

outputting a cryptographic parameter.

33. The method of claim 32, wherein the cryptographic
parameter is the value of the next weighted sum after a pre-
determined number of iterations.

34. The method of claim 33, wherein the predetermined
number of iterations is log,n.

35. The method of claim 32, wherein the first weighted sum
is the previous weighted sum.

36. The method of claim 32, wherein the corresponding
words of the first operand and the second operand are asso-
ciated with a selected power of a radix.

37. The method of claim 32, wherein the determining of the
first weighted sum includes word-shifting at least one of the
multiple subproducts.

38. The method of claim 32, wherein the multiple subprod-
ucts correspond to low or high branches having no mid-
branch ancestors of a corresponding recursion tree.

39. The method of claim 32, wherein the recursively cal-
culated intermediate product corresponds to a mid branch of
a corresponding recursion tree.

40. The method of claim 32, wherein at least one of the
operands corresponds to a private key, and the cryptographic
parameter is a public key.

41. The method of claim 32, wherein the cryptographic
parameter is used in digital signature generation or digital
signature verification.

42. The method of claim 41, wherein the digital signature
generation process or digital signature verification process is
part of an elliptic curve digital signature algorithm.

43. An apparatus for performing a cryptographic method,
comprising:

means for obtaining a first operand and a second operand

having n words, wherein n is an integer that is a power of
two and is greater than one;

means for determining a first weighted sum from multiple

subproducts, the multiple subproducts being found by
multiplying words of the first operand with correspond-
ing words of the second operand;

means for iteratively determining a next weighted sum

from a previous weighted sum, a shifted version of the
previous weighted sum, and a recursively calculated
intermediate product; and

means for outputting a cryptographic parameter.

44. The method of claim 32, wherein the storing comprises
padding at least one of the operands to form n words.

#* #* #* #* #*

