US008090934B2

a2 United States Patent 10) Patent No.: US 8,090,934 B2
Koc (45) Date of Patent: Jan. 3, 2012
(54) SYSTEMS AND METHODS FOR PROVIDING (56) References Cited
SECURITY FOR COMPUTER SYSTEMS
U.S. PATENT DOCUMENTS
(76) Inventor: Cetin Kaya Koc, Istanbul (TR) 5,623,615 A * 4/1997 Salemetal.cco....... 712/238
5,842,008 A * 11/1998 Gochman et al. 712/240
(*) Notice: Subject to any disclaimer, the term of this g’ﬁg’igi gé: 1?%882 g;%};jztnaelﬁ R g /1145
patent is extended or adjusted under 35 2001/6032’305 AL* 10/2001 Barry ..ccooevvevvveeennnnenn, 712/34
U.S.C. 154(b) by 1150 days. 2007/0113059 A1* 52007 Tran o 7127241
2007/0226795 Al* 9/2007 Contietal.ccceoee... 726/22
(21) Appl. No.: 11/774,951 2009/0217017 Al* 82009 Alexanderet al. 712/241
* cited by examiner
(22) Filed: Jul. 9, 2007
Primary Examiner — Beemnet Dada
: " 74) Attorney, Agent, or Firm — Kilpatrick Townsend &
(65) Prior Publication Data (&), A8 p
Stockton LLP; Gerald T. Gray; Ben Holt
US 2008/0052499 A1l Feb. 28, 2008
57 ABSTRACT
Related U.S. Application Data Hardware and/or software countermeasures are provided to
(60) Provisional application No. 60/343.,448, filed on Sep. reduce or eliminate vulnerabilities due to the observable and/
7, 2006, provisional application No. 60/830,210, filed or predictable states and state transitions of microprocessor
0;1 Tul il 2006 T components such as instruction cache, data cache, branch
Y ’ prediction unit(s), branch target buffer(s) and other compo-
51y Int.Cl nents. For example, for branch prediction units, various hard-
Gh Gn 0;$F 7 /38 2006.01 ware and/or software countermeasures are provided to reduce
(0D) vulnerabilities in the branch prediction unit (BPU) and to
(52) US.CL oot 712/238; 726/26 protect against the security vulnerabilities due the observable
(58) Field of Classification Search 712/238, and/or predictable states and state transitions during BPU
712/239, 233, 237, 241; 708/250; 726/34, operations.
726/22, 26, 30
See application file for complete search history. 6 Claims, 8 Drawing Sheets
Lock Bit
BTB Line: Tag Branch Data
Lock Bit
BTB Set: ! Tag | Branch Tag Branch
' 1 Data 1 Data 2

US 8,090,934 B2

Sheet 1 of 8

Jan. 3, 2012

U.S. Patent

ndinQ Ndg

L

0¥ 1d4

Z 1019Ipald youelg

‘Ippe "bas 1xau

—o

ssaJlppe jobue;}

&—{ SSB.IppE Youelq

06 914

y 3

l Ndg [BV1SseD

US 8,090,934 B2

Sheet 2 of 8

Jan. 3, 2012

U.S. Patent

IndinQ
10]a1pald

pPaiipoy

¢ Old

leufig jouo)

Indino Ndg

21607
inding palyipoy

0.
anfep

wopuey(opnasd)

101RJ3US9) ig

~ wopuey(opnasy)
09

T

£

Ippe 'bas 1xau

—o

ssalppe 186.e)

A

—— SS9.IpPEe Youeiq

'

da14

0} Ndd [edisse|)

US 8,090,934 B2

Sheet 3 of 8

Jan. 3, 2012

U.S. Patent

€ Old

Indino
10101pald
PSlIpON
[eubis [043u09)
Indino Ndg
XN
| 01¢
M~
¢l
1g
wopuey(opnasd)

10JeJaUss) 1ig

~-] wopuey(opnasd)

09

s

1dd

Ippe “bas xeu

—0

ssalppe 19b.ie)

|

F

g14

o——{ SSaIppe youelq

0L Ndg [edIsse)

US 8,090,934 B2

Sheet 4 of 8

Jan. 3, 2012

U.S. Patent

1ndinQ

10101pald

PaljipoN

ndino ndg

¥ "Old

s

leubig [o13u0Q

g

wopuey(opnasd)

£

[e20|

09

lojesauan) 1ig
wopuey(opnasd)

1ppe "bas xau o

sSeIppe youelq

a

ssaippe 196.e) Io\l

a14

0] Nd4g [edisser)

U.S. Patent

Jan. 3, 2012 Sheet 5 of 8 US 8,090,934 B2
31 k t 0
Tag Index Branch Address
- 32-k bits
——» Index Tag Branch Data

FIG. 5

U.S. Patent Jan. 3,2012 Sheet 6 of 8 US 8,090,934 B2

ERS Branch Address [k-1,1] > Index
o E
'}'E § Branch Address [31,k] > Tag
|_
Branch Address [k-2,1] |
|| log_proc_id 91 Modified
‘v " Index
MUX
Branch Address [k-1,{]] ——
T o
= & Control Signal
-
oo
=0
Branch Address [31,k-1] —
[! : Modified
21 —» T
ol MUX g
Branch Address [31,K]
Control Signal

FIG. 6

U.S. Patent Jan. 3, 2012 Sheet 7 of 8 US 8,090,934 B2

Lock Bit
T
BTB Line: Tag Branch Data
Lock Bit
f
BTB Set: ! Tag | Branch Tag | Branch

1 Data 1 2 Data2 | ~~°~°°°°~°

FIG. 7

U.S. Patent Jan. 3,2012 Sheet 8 of 8 US 8,090,934 B2

Traditional BTB structure

"2-10-1
MUX

A 4

PBTB index

Control Signal

Protected BTB
Area

FIG. 8

US 8,090,934 B2

1
SYSTEMS AND METHODS FOR PROVIDING
SECURITY FOR COMPUTER SYSTEMS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/830,210, filed Jul. 11,2006, and U.S.
Provisional Application Ser. No. 60/843,448, filed Sep. 7,
2006, the disclosures of which are each incorporated herein
by reference in its entirety.

BACKGROUND

The present invention relates in general to computing sys-
tems and more particularly to systems and methods for pro-
viding security for computing systems having a processing
unit, such as a microprocessor, with one or more processor
components such as cache units, instruction cache units,
branch prediction units, branch target buffers, and other com-
ponents.

Over the years, various techniques have been developed for
protecting computing systems from unauthorized access. For
example, techniques for protecting computing systems can be
software and/or hardware based. Many of today’s techniques
are software based and target network intruders. Unfortu-
nately, many conventional techniques today do not effectively
protect computing systems from various types of security
breaches. For example, the central processing units (CPUs)
have recently been shown to cause unforeseen security vul-
nerabilities that threaten the entire computing system.

More recently, there have been increased research efforts
concentrating on the security analysis of computing systems
by analyzing the vulnerabilities due to the functional behav-
ior of microprocessor components such as branch prediction
units. As described above, computing systems are often vul-
nerable to security breaches at the processor level. More
specifically, it is well-known that microprocessor compo-
nents such as instruction cache and branch prediction units
create significant security weaknesses.

Branch prediction is an important aspect of modern com-
puting and is used in virtually all computing systems. Typi-
cally, a branch prediction unit (BPU) is an integral part of the
central processing unit (CPU) and its functions include deter-
mining whether a conditional branch in the instruction flow of
a program or process is likely to be taken or not. As shown in
FIG. 1, a conventional BPU 10 typically includes a branch
predictor 20 and a branch target buffer (BTB) 50. The BPU 10
uses both the BTB 50 and branch predictor 20 to assist the
CPU in performing speculative execution, e.g., by deciding
the most likely execution path after a conditional branch.

In conventional computer architectures, the predictor 20 is
a part of the BPU that makes the prediction on the outcome of
the branch. The predictor usually is a unit that predicts the
most likely execution path after a conditional branch by try-
ing to find repetitive patterns in the history of the conditional
branch. For example, there are different parts of a predictor
20, including, but not limited to, branch history registers
(BHR) 30 such as global history registers and local history
registers, and branch prediction tables 40.

In various computer architectures, the BTB 50 is the buffer
where the CPU stores the target addresses of the previously
executed branches. Because this buffer is limited in size, the
CPU can only store a limited number of such target addresses.
For example, a previously stored address may be replaced by
anew address if the new address needs to be stored. Typically,
a buffer is implemented by an array of registers, each register

20

25

30

35

40

45

50

55

60

65

2

location holding the logical value of 1 or 0. If the CPU cannot
find the target address of a branch in the BTB, it has to
compute the address. Typically, the computation process
imposes a performance cost, as the CPU cannot immediately
feed the pipeline with instructions from the correct path.

As an important component of the CPU, the state of the
BPU affects the execution of a process in a CPU. Often, an
attacker is able to predict the state transitions during the
execution of a process, as these transitions cause observable
effects. For example, typically the execution time of a pro-
cess, the power consumption of the processor (thus the power
consumption of the entire system), the electromagnetic dis-
sipation of the processor (thus the entire system), etc. depend
on the state of microprocessor components such as the BPU,
data cache, instruction cache and the like. The execution time
also depends on the transitions of these states. Furthermore,
typical microprocessors use special registers that keep track
of these changes and store statistics related to these states
transitions. Such registers can also be used to observe these
states and state transitions. The ways to observe such infor-
mation are not limited to these specific examples, and addi-
tional ways are known to those skilled in the art. The knowl-
edge of these states and state transition gives an attacker the
ability to predict the secret and/or hidden values used in a
security mechanism or process. For example, it is possible to
determine a secret value by checking whether a Montgomery
multiplication executes the extra reduction during an RSA
exponentiation.

As another example, an attacker may alter the state of the
BPU, instruction cache and/or other components of a proces-
sor to cause measurable effects on the execution of a cipher
process, which is, generally, an algorithm for performing
encryption and decryption. These effects, especially those on
the encryption time, can be directly or indirectly observed by
an attacker and can be used to compromise the computer
system and/or its security functions. In addition, the execu-
tion of the cipher process also affects the state transitions. For
example, the cipher leaves its footprints when the instruction
cache and BPU state changes depending on the execution. An
attacker may examine these states to capture these footprints
and obtain the secret values if the execution flow is key-
dependent. In other words, an adversary can learn the execu-
tion flow of a cipher using BPU and/or instruction cache
based attacks. If this execution flow depends on a key, for
example, the attacker may be able to obtain the key and break
into the computer system. The security vulnerabilities caused
by the observable state and state transitions due to the func-
tionalities of the processor components are not limited to the
examples given herein.

Accordingly, it is desirable to provide improved security
solutions for computing systems. In particular, it is desirable
to provide better security solutions for protecting computing
systems from attacks that exploit the state of the processor
and system components and to protect against the security
vulnerabilities due to the BPU operations.

BRIEF SUMMARY

The present invention provides improved security systems
and methods for use in computing systems, such as computer
systems, embedded systems, smart-card based systems and
any other microprocessor-based systems that perform com-
putations, especially security related and/or security critical
computations. According to certain embodiments, systems
and methods are provided for preventing attacks that depend
on the state of the microprocessor and/or microprocessor
components or other computing system components includ-

US 8,090,934 B2

3

ing, but not limited to, branch prediction units, instruction
caches, data caches and the like, and the transitions between
these states.

According to certain embodiments of the present inven-
tion, hardware and/or software countermeasures are provided
to reduce or eliminate vulnerabilities due to the observable
and/or predictable states and state transitions of microproces-
sor components such as instruction cache, data cache, branch
prediction unit(s), branch target buffer(s) and other compo-
nents. For example, in a specific embodiment related to
branch prediction units, various hardware and/or software
countermeasures are provided to reduce vulnerabilities in the
branch prediction unit (BPU) and to protect against the secu-
rity vulnerabilities due the observable and/or predictable
states and state transitions during BPU operations. For
example, certain aspects of the present invention help reduce
the risk of the BTB being attacked, and certain aspects help
make the branch predictor more secure. In the past, various
threats against computing systems have exploited predictor
and/or BTB behavior to obtain sensitive information pro-
cessed by a CPU. It is therefore to be appreciated that the
present invention provides various embodiments for prevent-
ing such threats. It is also to be understood that the present
invention has a wide range of applications and is not limited
to branch prediction related security measures.

According to one aspect of the present invention, a com-
puting system is provided that typically includes a processing
unit having a component that provides an output signal, and a
signal modification unit that receives the output signal. The
signal modification unit is typically configured to output one
of the output signal or a fake output signal responsive to a
received control signal. In certain aspects, the component
includes a branch prediction unit (BPU) that provides a BPU
output signal. In certain aspects, the system further includes a
random number generator that provides a random value sig-
nal, wherein the signal modification unit generates the fake
output signal using the random value signal responsive to the
control signal indicating that a fake output signal be output. In
certain aspects, the signal modification unit includes a circuit
element configured to produce the fake output signal by ran-
domly inverting the received output signal. In certain aspects,
the signal modification unit includes a multiplex circuit ele-
ment configured to produce the fake output signal by multi-
plexing the received output signal and one or more bits of the
random value signal. In certain aspects, the computing system
is implemented in one of a desktop computer system, a laptop
computer system, a mainframe computer system, a cell phone
device, or a personal digital assistant device.

According to another aspect of the present invention, a
computing system is provided that typically includes one or
more logical and/or physical processing units each for execut-
ing one or more processes, and a buffer module, wherein one
or more of the processing units and/or processes executing in
aprocessing unit is allocated an independent, unshared buffer
space in the buffer module. In certain aspects, the buffer
module includes a plurality of separate physical buffer units,
wherein each process is allocated one or more separate physi-
cal buffer units. In certain aspects, the bufter module includes
a single physical buffer space, wherein each process is allo-
cated a separate physical portion of the buffer space. In cer-
tain aspects, the buffer module includes a plurality of separate
physical buffer units, and wherein each process is allocated a
separate buffer space that spans one or more buffer units. In
certain aspects, each independent, unshared buffer space is
allocated to each process virtually and/or dynamically. In
certain aspects, the buffer unit is one of a cache, an instruction
cache or a branch target buffer. In certain aspects, the com-

20

25

30

35

40

45

55

60

4

puting system is implemented in one of a desktop computer
system, a laptop computer system, a mainframe computer
system, a cell phone device, or a personal digital assistant
device.

According to another aspect of the present invention, a
computing system is provided that typically includes a pro-
cessing unit that executes one or more processes, and a branch
target buffer (BTB), wherein the BTB includes a plurality of
entries, each entry having an associated lock bit. In operation,
a process executing on the processing unit determines
whether to set a lock bit for a BTB entry, and BTB entries
having a set lock bit are handled differently than BTB entries
that do not have a set lock bit. In certain aspects, entries
having a set lock bit cannot be evicted by a process other than
the process that set the lock bit or an operating system. In
certain aspects, the operating system evicts entries having a
lock bit set by a first process after the first process has termi-
nated. In certain aspects, the associated lock bit is stored in a
memory location different from the BTB. In certain aspects,
the associated lock bit is stored with the entry in the BTB. In
certain aspects, the computing system is implemented in one
of a desktop computer system, a laptop computer system, a
mainframe computer system, a cell phone device, or a per-
sonal digital assistant device.

Reference to the remaining portions of the specification,
including the drawings and claims, will realize other features
and advantages of the present invention. Further features and
advantages of the present invention, as well as the structure
and operation of various embodiments of the present inven-
tion, are described in detail below with respect to the accom-
panying drawings. In the drawings, like reference numbers
indicate identical or functionally similar elements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a conventional Branch Prediction Unit that
includes a branch predictor and a branch target buffer (BTB).

FIG. 2 is an illustration of how to add randomizations to the
behavior of a predictor according to one embodiment of the
present invention.

FIG. 3 illustrates logic circuitry for selecting the classical
or random prediction outcome according to an embodiment
of the present invention.

FIG. 4 illustrates logic circuits capable of inverting the
classical prediction randomly according to an embodiment of
the present invention.

FIG. 5 illustrates a general BTB line.

FIG. 6 illustrates a technique for virtually unsharing/parti-
tioning the BTB according to an embodiment of the present
invention.

FIG. 7 illustrates a modified BTB line/set with a locking
mechanism according to an embodiment of the present inven-
tion.

FIG. 8 illustrates a protected BTB area according to an
embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention provide security
systems and methods for computing systems having one or
more processing components, such as a microprocessors,
each with one or more processor components such as cache
units, instruction cache units, branch prediction units, branch
target buffers, and other components. In one specific embodi-
ment, for example, the present invention provides methods
and systems for preventing security breaches related to
branch prediction by central processing units. Merely by way

US 8,090,934 B2

5

of example, the invention is described as it applies to archi-
tectural level security of computing systems, but it should be
recognized that the invention has a broader range of applica-
bility. Embodiments of the present invention are useful in a
variety of computing systems and device incorporating com-
puting systems. Examples include desktop computer sys-
tems, laptop computer systems, mainframe computer sys-
tems, cell phone devices, personal digital assistant devices,
smart cards, embedded systems, etc. and any other systems
incorporating a microprocessor or similar intelligence mod-
ule.

Also, although the remainder of this document will discuss
embodiments and aspects of the invention in terms of their
applicability to BPU and BTB units, it should be appreciated
that embodiments and aspects of the present invention may be
applied to any other processor components. Examples of such
components include data cache and instruction cache. In gen-
eral, a processor component is a component having an inter-
nal state that is affected by execution of a process, which
produce state transitions in the component. In many cases,
these states and state transitions may be observable by an
adversary using appropriate measurement techniques. A pro-
cessor component typically includes a collection of one or
more circuit elements that are configured to perform one or
more specific tasks. Additionally, it should be appreciated
that, where an output signal is mentioned, embodiments of
the present invention are equally applicable to any signal in a
processor component, e.g., any signal on a wire internal to a
component or any signal between components.

Predictor Related Countermeasures

According to various embodiments, system security is
improved by making it difficult for an adversary to observe
the output of a processor component using methods described
herein. In certain aspects, new secure instructions are used,
and the implementers need to use them to indicate for which
conditional branches need to be handled securely. According
to one aspect, in these new secure branch instructions, at least
one bit, which indicates whether the branch needs to be
handled securely, is different than in the original branch
instruction.

In certain embodiments, the predictor for certain user-
determined conditional branches is disabled. In a specific
embodiment, the predictor is disabled so that branch predic-
tion operations are not performed. In another embodiment,
the predictor functions normally but the outcome of the pre-
diction is ignored. For example, the execution has to stall until
the actual outcome of the branch is determined. To achieve
this functionality, the control logic of the predictor is modi-
fied.

These embodiments can also be adapted to the cases of
other microprocessor components such as data cache,
instruction cache, and the like. For example, data cache and/
or instruction cache can be disabled for certain user-deter-
mined memory accesses. In some embodiments, data cache
and/or instruction cache may be disabled so that memory
accesses are not served from these components. In some
embodiments, certain user-determined memory accesses
may not be served from these components. In other embodi-
ments, these microprocessor components may function nor-
mally but the outcomes may be ignored and certain user-
determined memory accesses may not served from these
components.

For example, in one embodiment, randomization function-
ality is added to the behavior of the predictor. Conventional
predictor functionalities are usually implemented as a func-
tion of the state of the predictor (i.e., local and global branch
history, BTB state and the individual predictors), and the

20

25

30

35

40

45

50

55

60

65

6

address of the conditional branch. The state transition is usu-
ally also a function of the above items plus the actual outcome
of the branch:

prediction=f(current state, branch address),

next state=g(current state, branch address, branch target

address, prediction, actual outcome).

These functions can be generalized for other processor
components such as data cache, instruction cache, and the
like:

the output of the component=t{(current state of the compo-

nent, other related data),

the next state of the component=g(current state of the com-

ponent, other related data),
for some functions f and g. Here the data denoted as “other
related data” in these functions may in some cases include the
output of these components.

In one embodiment, an element is added to the above
functions, which element makes it difficult for an adversary to
predict or observe the state or state transition. For example, in
one aspect, a pseudorandom element is added to the above
state functions. One example is a pseudo random number
generator (PRNG) 60, as shown in FIG. 2. PRNG 60 may
already be present in the chipset or it may be added. The
PRNG 60 provides a (random) output signal to a signal modi-
fication logic circuit 70. A particular bit of the values (one or
more bits) generated by the PRNG 60 can be used by the logic
circuit 70, or a function of more than one bit may be chosen.
A control signal specifies whether the logic circuit 70 will
output the randomized (i.e., fake) prediction or the actual
outcome of the traditional predictor. For example, in one
aspect, the random prediction outcomes are desired to be 50%
Taken and 50% Not Taken. However, it should be appreciated
that other ratios of Taken to Not Taken may be used.

In other aspects, any signal may be used to add randomness
orunpredictability to the output of the predictor. For example,
In one aspect, the function of PRNG 60 (to provide a signal to
logic circuit 70) in FIG. 2 may be implemented by a signal
generator that outputs a constant signal; logic circuit 70,
responsive to the control signal, will output the fake signal
based on the constant signal or it will output the actual pre-
diction signal. In another aspect, the function of PRNG 60
may also be implemented by a clock signal, either an external
clock signal, or a clock signal internal to logic circuit 70. In
general, the signal provided to logic circuit 70 may be imple-
mented by a variety of signal generator elements known to
those skilled in the art.

This protection method may be implemented in a variety of
ways. For example, in one embodiment, a protection method
is implemented by selecting either the actual prediction or the
fake prediction as illustrated in FIG. 3. As shown in FIG. 3,
signal modification logic circuit 70 includes a circuit element
72 configured to produce the modified predictor output signal
(fake prediction) by multiplexing (MUX) the BPU output
signal and one or more bits of the signal generator. The signal
generator may be configured to output a single (random) bit or
multiple (random) bits. As another example, a protection
scheme is implemented by inverting the classical prediction
randomly, as shown in FIG. 4. As shown in FIG. 4, the signal
modification logic circuit 70 includes circuit elements 74 and
76 configured to produce the modified predictor output signal
by randomly inverting the BPU output signal. These diagrams
are merely examples, which should not unduly limit the scope
of the claims. One of ordinary skill in the art will recognize
many variations, alternatives, and modifications. For
example, a logic circuit 70 may be coupled to any signal path
in any processor component or between any processor com-
ponents, e.g., awire internal to a cache or the BTB or the BPU

US 8,090,934 B2

7

or a buffer or a wire between the BHR and BPT, etc. In this
case, the logic circuit receives a signal on the signal path and,
responsive to a control signal, either outputs the received
signal or a fake signal as described above. As another
example, the fake output signal output by logic circuit 70 can
include the control signal itself or the control signal inverted,
or it can include the received output signal inverted.

BTB Related Countermeasures

The present invention also improves system security by
reducing potential vulnerabilities related to the BTB. More
specifically, in certain aspects, new secure branch instruc-
tions are introduced. In one aspect, to avoid the interference
of malicious code, such as a spy/dummy process, to the
execution of the cipher, the BTB records of each process are
located in a different buffer. In another aspect, the BTB is
implemented in such a way that the critical conditional
branches always cause BTB hits or misses, in which case it is
possible to implement a cipher so that the execution becomes
independent of the BTB outcomes. In another aspect, the
BTB records of critical conditional branches are located in an
unpredictable manner so that the attacks become harder to
apply, e.g., if the attacker does not know the exact location of
a BTB record, the attacks will be more costly.

Independent BTB

According to one embodiment, a BPU is implemented with
independent (i.e., unshared) branch target buffers. For
example, in one aspect, each process in a CPU is allocated its
own BTB space. Additionally or alternatively, each logical
and/or physical processorunit is allocated its own BTB space.
A physical processor may present itself to the OS as two or
more independent logical processors. For example, in a
Simultaneous Multi-Threading System (e.g., Intel’s Hyper-
Threading technology), a real physical processor is able to
presents itself to the operating system as two or more inde-
pendent logical processors. As a result of using independent,
unshared buffer spaces, the interference between spy and
cipher processes via BTB is minimized and/or prevented. An
operating system (OS) is a set of computer programs that
manage the hardware and software resources of a computer.
An operating system processes raw system and user input and
responds by allocating and managing tasks and internal sys-
tem resources as a service to users and programs of the sys-
tem. In general, all software that manages hardware and soft-
ware resources of a computing environment will be referred
to herein as the operating system. Examples of such software
include virtual machine monitors, hypervisors, and reference
monitors. While an adversary may clear the BTB during a
context switch, the amount of biased BTB outcomes of the
cipher is greatly reduced. The OS in the system may clear
(e.g., flush, invalidate) a BTB space with a certain frequency
and/or during special events. For example, the OS may clear
the BTB during each context switch and/or before starting an
execution of some applications and/or after the termination of
some applications. Furthermore, the hardware system, e.g. a
processor, or an application may also clear a BTB space with
a certain frequency and/or during special events. A BTB
space may include a portion of a BTB unit, an entire (sepa-
rate) BTB unit, portions of separate BTB units, or a plurality
of separate BTB units.

In one embodiment, the allocated BTB spaces are indepen-
dent and are virtually and/or dynamically allocated. For
example, in one aspect, BTBs may be implemented as sepa-
rate physical units. In general, any number of separate physi-
cal BTB units may be implemented. Physical independence is
implemented, in one aspect, (at least) by way of using a
different physical BTB for each process and/or logical pro-
cessor in the CPU. Also, each process and/or logical proces-

20

25

30

35

40

45

50

55

60

65

8

sor can be allocated more than one physical BTB. In another
aspect, each process and/or logical processor can be allocated
a separate buffer space that spans more than one physical
BTB, e.g., multiple processes and/or logical processors share
multiple BTBs, but the buffer space allocated to each process
and/or logical processor is separate and unshared. According
to another embodiment, a single large physical BTB is parti-
tioned into multiple and preferably disjoint portions by way
of hard coding (i.e., forcing each logical processor to use a
disjoint portion of the BTB).

In another embodiment, the BTB are utilized as dynami-
cally allocated virtual partitions. For example, a specific
instruction set is provided for the process. In another embodi-
ment, instructions are used to indicate the presence of sensi-
tive operations and the need of (virtually) independent BTB.

FIG. 5 is a simplified diagram illustrating a conventional
BTB line. As shown in FIG. 5, 32-bit addressing is used. The
part of the branch address that spans from bitt to k-1 is used
as an index to find the correct location of a branch in the BTB.
The values of k and t typically depend on the system archi-
tecture. The “Tag” portion of the address is stored in the
corresponding BTB line to compare it with the actual tag ofan
executed branch to determine whether the BTB has the cor-
rect entry.

In one aspect, to make each BTB independent, the BTB
line is modified. For example, a modified BTB line according
embodiments of the present invention allows for BTB lines to
be virtually independent. FIG. 6 is a simplified diagram illus-
trating a modified BTB line according to an embodiment of
the present invention. As shown, an identification number for
a logical processor and/or process is implemented as part of
the index (e.g., the most significant bit(s) of the index). As a
result, each process and/or processor has virtually indepen-
dent and unshared BTB partitions, as two different logical
processors and/or processes cannot have two branches with
the same index and the branch data from two different logical
processors and/or processes have to be stored in different
parts of the BTB.

To preserve the correct functionality, the tag address space
in the BTB line is increased by a number of bits, N, where N
is a number greater than or equal to zero. FIG. 6 is merely an
example, which should not unduly limit the scope of the
claims. One of ordinary skill in the art would recognize many
variations, alternatives, and modifications.

In a specific embodiment, it is possible to dynamically
switch between a normal BTB operation mode and a virtually
unshared BTB mode using special instructions. For example,
a process may indicate that it needs to be virtually indepen-
dent (e.g. needs a virtually unshared BTB buffer) and/or the
CPU can switch to the virtually unshared BTB mode. In one
embodiment, during a context switch, the operating system
stores this information (i.e. the need of be virtually indepen-
dent) as part of the process state. For example, the operating
system is able to set/reset the mode when determined to be
necessary by the operating system.

Partitioned BTB

According to another embodiment, the present invention
provides a partitioned BTB. Some parts of a BTB can be
exclusively reserved and/or dedicated to some certain pro-
cesses and/or logical processors. Depending upon the appli-
cation, partitions can be dynamically allocated or statically
implemented. In the case of dynamic partition allocation, new
instructions are introduced to manage the dynamic partition-
ing. This management can be software based (i.e., the oper-
ating system can manage the partitions) and/or hardware
based.

US 8,090,934 B2

9

The software based partitioning can be implemented in
different ways. By way of an example, the operating system
(OS) can modify the logical addresses of the branches before
starting the execution of a process. In order to do this, the OS
has to have detailed information of the process’ code, which
can be provided by the compiler. Therefore, the OS can
remove inter-process BTB collisions.

Another approach is to manage the partitioning in the hard-
ware. Again this approach can be implemented in many dif-
ferent ways. The following are some examples.

In one embodiment, a process executes a special instruc-
tion that instructs the CPU to reserve a part of the BTB only
to this process. For example, it may be necessary to use one of
the reserved bits in control registers as a flag to indicate if the
BTB has been partitioned. When the CPU receives the special
instruction from a process, the CPU sets the flag and uses a
special part of the BTB that is to be used only for this pro-
cess’s entries.

The special instruction is one way of various BTB protec-
tion methods. For example, in Pentium® 4, the BTB is 4-way
associative. Accordingly, a CPU can reserve one or more
specific ways of these 4 ways for a process and the entries of
this process can exclusively use these parts of the BTB and the
rest of the buffer can be used for general purposes, i.e., for
other processes. For example, during a context switch, the
new flag needs to be reset so that the partitioned way(s) can be
used again for general purposes.

Depending on the application, the BTB may also be parti-
tioned in many other ways. For example, the BTB can be
partitioned in the same way a traditional cache is partitioned
(with some minor modifications which are suitable for the
BTBs as would be apparent to one skilled in the art). In this
manner, a large part of the BTB does not need to be parti-
tioned.

BTB-Set Lock

According to certain embodiments, rather than reserving a
large portion of the BTB, one or more BTB entries (or sets)
may be reserved for one or more entries of some processes.
For example, reserving a smaller portion of the BTB advan-
tageously allows for avoiding BP attacks without closing a
large part of the BTB to general use. In one embodiment, as
shown in FIG. 7, each entry (or set, respectively) includes an
associated lock bit. The lock bit may be stored as part of the
entry as shown in FIG. 7, or it may be stored in a different
location in the computing system. When a process executes a
special instruction (e.g., secure, conditional branch instruc-
tion), the CPU sets the lock bit of the particular entry (or set,
respectively). Entries having their lock bit set are handled in
a different, e.g., secure, manner than entries that do not have
their lock bit set. For example, when the CPU loads a new
value to the BTB, it may only evict the entries that do not have
alock bit set. Therefore, the target address of the target branch
cannot be evicted from the BTB. In one aspect, at each context
switch, all of the lock bits are reset.

In some cases, this technique may cause a race-condition
and a possible deadlock. In an embodiment, a special part of
BTB may beused to avoid deadlocks. For example, ifa secure
conditional branch faces a deadlock situation, an entry from
this special part can be used to store the record of that branch.

A single or several BTB entries or a single/several BTB
sets can be reserved in BTB for security critical branches.
According to one embodiment, a BTB locking mechanism
provides this capability. A process can determine which and
how many of its branches needs to be handled in a more
secure way. Some branches in a software can be marked as
critical and the CPU would handle these branches differently
than the others, e.g., in a more secure manner. Hardware

20

25

30

35

40

45

50

55

60

65

10

additions to the BTB and a system interface for controlling
which branches should be locked are provided. The system
interface may be defined in several different ways including
adding new instructions to the instruction set of the processor
to specify which branches should be locked in BTB. The
hardware additions to the BTB may also be implemented in
several different ways. In one embodiment, a single bit is
added to each BTB line. This bit specifies whether the entry
stored in this BTB line is locked. In another embodiment, a
single bit is added to each BTB set. In another embodiment,
the CPU store this information in another part of the system,
e.g., a buffer separate from the BTB. In general, the CPU
stores the information of which entries in BTB should be
locked. When an entry is locked in a BTB by a process, this
entry should notbe evicted as a result of execution of a branch
that belongs to another process. In other words, a locked entry
in the BTB should not be replaced by another entry that
belongs to another process. A locked entry that belongs to a
process can be removed from the BTB when this process
terminates.

In one embodiment, as long as a process is active (i.e., not
terminated), the locked entries that belong to this BTB cannot
be evicted from BTB by a process different from the process
that owns the entry and cannot be replaced by other pro-
cesses’ entries. The operating system or any other software
that controls the overall system (referred to herein as the OS)
may remove the locked entries from the BTB. For example, in
one aspect, the OS removes the lock on the locked entries that
belong to a process when this process terminates. In certain
aspects, a lock on a BTB line can be removed by resetting the
lock bit in this line.

The OS or the CPU needs to keep track of which locked
BTB entries belong to which process. In one embodiment,
additional hardware is added to each BTB line to store to
which process this BTB entry belongs. In one aspect, this is
done by storing an identification of the process, i.e., ID of the
process. In another aspect, the CPU stores this information in
another part of the system; for example in a dedicated buffer.
In yet another aspect, this information is stored by the OS in
buffer in main memory. In one embodiment, a new instruction
is added to the instruction set. This new instruction can be
executed by OS after the termination of a process to automati-
cally remove the locking on the BTB entries that belong to
this process. In one embodiment, the CPU needs to know the
information on which processes are active and which pro-
cesses are not active. This is done, in certain aspects, by a
communication between the OS and CPU (for example via
executing an instruction) and the OS can pass this information
to CPU. In this aspect, the CPU can remove the locking on
BTB entries that belong to a terminated process. In another
aspect, the OS handles this task by removing the locking on
BTB entries that belong to a terminated process. In one
embodiment, a new instruction is added to the instruction set
for removing the locking on a specified BTB entry (for
example by resetting the lock bit). There can be several other
alternatives. It should be realized that the techniques of lock-
ing a BTB entry is not limited to these specified entries and
has a broader application range.

Constant BTB Output

According to one embodiment, an implementer-specified
conditional branch, which can always yield a constant BTB
output (e.g., either always a hit or a miss), is provided. One
example of such a protected BTB area is described below.
Protected BTB Area

According to various embodiments, the target addresses of
certain implementer-specified conditional branches may be
stored in a protected BTB area in advance. For example, new

US 8,090,934 B2

11

pre-load instructions and secure conditional branch instruc-
tions may have to be preloaded.

The target addresses can be loaded before the actual com-
putations in a buffer and the new secure conditional branches
can refer to the indices of this buffer. For example, as shown
in FIG. 8, the instruction of a conditional branch can have the
index instead of the actual target address. The CPU first
fetches this particular location, then starts fetching instruc-
tions in the target address. This protected area is preferably
unshared. During a context switch, the content needs to be
saved and reloaded after the process starts again.

While the invention has been described by way of example
and in terms of the specific embodiments, it is to be under-
stood that the invention is not limited to the disclosed embodi-
ments. To the contrary, it is intended to cover various modi-
fications and similar arrangements as would be apparent to
those skilled in the art. Therefore, the scope of the appended
claims should be accorded the broadest interpretation so as to
encompass all such modifications and similar arrangements.

What is claimed:
1. A computing system, comprising:
one or more devices, including:

20

12

a processing unit that executes one or more processes; and

a branch target buffer (BTB), wherein the BTB includes a
plurality of entries, each entry having an associated lock
bit, wherein a process executing on the processing unit
determines whether to set a lock bit for a BTB entry, and
wherein BTB entries having a set lock bit are handled
differently than BTB entries that do not have a set lock
bit.

2. The system of claim 1, wherein entries having a set lock
bit cannot be evicted by a process other than the process that
set the lock bit or an operating system.

3. The system of claim 1, wherein the operating system
evicts entries having a lock bit set by a first process after the
first process has terminated.

4. The system of claim 1, wherein the processing unit sets
the lock bit for a particular entry in response to a cipher
executing a secure conditional branch instruction.

5. The system of claim 1, wherein the associated lock bit is
stored in a memory location different from the BTB.

6. The system of claim 1, wherein the associated lock bit is
stored with the entry in the BTB.

#* #* #* #* #*

