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Abstract—1In 2022, the National Institute of Standards and
Technology (NIST) made an announcement regarding the stan-
dardization of Post-Quantum Cryptography (PQC) candidates.
Out of all the Key Encapsulation Mechanism (KEM) schemes,
the CRYSTAL-Kyber emerged as the sole winner. This paper
presents another improved version of Plantard arithmetic that
could speed up Kyber implementations on two low-end 32-bit
IoT platforms (ARM Cortex-M3 and RISC-V) without SIMD
extensions. Specifically, we further enlarge the input range of
the Plantard arithmetic without modifying its computation steps.
After tailoring the Plantard arithmetic for Kyber’s modulus,
we show that the input range of the Plantard multiplication
by a constant is at least 2.14x larger than the original design
in TCHES2022. Then, two optimization techniques for efficient
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Plantard arithmetic on Cortex-M3 and RISC-V are presented.
We show that the Plantard arithmetic supersedes both Mont-
gomery and Barrett arithmetic on low-end 32-bit platforms. With
the enlarged input range and the efficient implementation of
the Plantard arithmetic on these platforms, we propose various
optimization strategies for NTT/INTT. We minimize or entirely
eliminate the modular reduction of coefficients in NTT/INTT
by taking advantage of the larger input range of the proposed
Plantard arithmetic on low-end 32-bit platforms. Furthermore,
we propose two memory optimization strategies that reduce
23.50%~28.31% stack usage for the speed-version Kyber imple-
mentation when compared to its counterpart on Cortex-M4. The
proposed optimizations make the speed-version implementation
more feasible on low-end IoT devices. Thanks to the afore-
mentioned optimizations, our NTT/INTT implementation shows
considerable speedups compared to the state-of-the-art work.
Overall, we demonstrate the applicability of the speed-version
Kyber implementation on memory-constrained IoT platforms
and set new speed records for Kyber on these platforms.

Index Terms— Post-quantum cryptography, Kyber, Plantard
arithmetic, Cortex-M3, RISC-V.

I. INTRODUCTION

ITH the emergence of quantum computing technol-

ogy, the existing Public Key Cryptographic (PKC)
schemes face a significant threat. Shor’s algorithm on quan-
tum computers can solve the mathematical hard problems of
these PKC schemes, such as the big number factorization
problem of RSA, the Discrete Logarithm Problem (DLP) of
ElGamal, and the Elliptic Curve Discrete Logarithm Problem
(ECDLP) of Elliptic Curve Cryptography (ECC), in poly-
nomial time. Although the creation of quantum computers
that can crack these PKCs is still beyond realistic reach [1],
the potential threat of quantum computers has prompted
the cryptographic community to seek alternative solutions
to replace the traditional PKC. In 2022, NIST announced
four finalists to be standardized for its six-year Post-Quantum
Cryptography (PQC) standardization project [2]. Among them,
CRYSTAL-Kyber [3] is the only KEM standard, while
CRYSTAL-Dilithium [4], FALCON [5], and SPHINCS™ [6]
are three digital signature standards. Therefore, the efficient
implementation of Kyber, the only PQC KEM standard, will
have great significance for the future deployment of Kyber
in realistic practices, such as cloud, edge, and Internet of
Things (IoT).

The application of IoT has spread out in various fields,
such as smart healthcare, home, and transportation domains.
Increasingly, IoT devices have been utilized to gather sensitive
data from individuals, corporations, military organizations, and
governments. It is estimated that by 2030, there will be around
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30 billion interconnected IoT devices [7]. With the rapid
development of quantum computing, safeguarding sensitive
data on numerous IoT devices against quantum computers is a
pressing concern in the near future. Therefore, deploying NIST
KEM standard Kyber for these IoT devices is essential. The
ARM Cortex-M4 platform is a NIST-recommended platform
for evaluating PQC performance and memory consumption
in IoT scenarios [8]. It has sufficient memory and a pow-
erful Single Instruction Multiple Data (SIMD) extension for
PQC implementation. However, there are also many low-
end platforms, such as the 32-bit ARM Cortex-M3/M0 and
RISC-V, which have more restricted power, computational
resources, and memory compared to ARM Cortex-M4. The
above restrictions on these platforms result in different imple-
mentation requirements for Kyber. Both memory consumption
and efficiency are critical metrics for evaluating the applica-
bility of Kyber on low-end IoT devices. Therefore, it is crucial
to conduct more in-depth research to achieve efficient and
feasible Kyber implementation on these IoT devices in the
upcoming years.

Kyber [3] is a lattice-based cryptographic (LBC) scheme
that relies on the theoretical security of the Module Learning-
with-Error (MLWE) problem. Previous software implemen-
tations [9], [10], [11], [12], [13], [14] mainly focus on
the improvement of LBC’s core operations such as polyno-
mial multiplication, vector inner product, and matrix-vector
product. Kyber’s parameters enable efficient polynomial mul-
tiplication by using the Number Theoretic Transform (NTT),
which reduces the time complexity of multiplying two degree-
n polynomials from 0(n?) (using the schoolbook method)
down to O(nlogn). NTT’s primary component is the butterfly
unit, including two commonly-used algorithms: the Cooley-
Turkey (CT) algorithm [15] and the Gentleman-Sande (GS)
algorithm [16]. A key operation in butterfly unit is the modular
multiplication by a twiddle factor, where one operand is
an arbitrary value, while the other one is a twiddle factor.
Commonly, in software implementations, the twiddle factor
is normally precomputed and stored in memory, hence the
modular multiplication by the twiddle factor is treated as the
modular multiplication by a constant.

Previous implementations [9], [10], [11], [12], [13], [14]
utilized the Montgomery [17] or Barrett [18] arithmetic to
compute the modular multiplication by the twiddle factor.
However, neither of these methods fully utilized the fact that
the twiddle factor is a precomputed constant to further speed
up the operation. In 2021, Plantard [19] proposed a word size
modular arithmetic (Plantard arithmetic) that enables efficient
computation of modular multiplication by a constant. Initially,
the Plantard arithmetic only supported unsigned integers,
which limited its feasibility in LBC schemes. Later in 2022,
Huang et al. [20] presented an improved Plantard arithmetic
tailored for the moduli in LBC schemes, which supports
signed integers and has superior performance compared to the
Montgomery and Barrett arithmetic. They achieved new speed
records for Kyber and NTTRU by replacing the Montgomery
and Barrett arithmetic with their signed-version Plantard
arithmetic on Cortex-M4. However, their method is mainly
benefited from utilizing the Cortex-M4’s SIMD instruction
smulw{b,t} to perform the 16 x 32-bit multiplication and
obtain the middle 16-bit effective product. The actual
performance of the Plantard arithmetic remains unexplored
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on low-end 32-bit platforms without such a powerful SIMD
extension. Moreover, the Plantard multiplication by a constant
in [20, Algorithm 11] supports inputs that are larger than a
16-bit signed integer, but the NTT/INTT implementation on
Cortex-M4 limits the coefficients to 16-bit signed integers
due to SIMD extension. Therefore, further investigation is
necessary to determine whether the Plantard arithmetic can
also replace the Montgomery and Barrett arithmetic on low-
end 32-bit platforms without SIMD extension and whether
the large input range can be fully utilized in NTT/INTT
implementations.

Contributions: This paper aims to improve the signed-
version Plantard arithmetic introduced in TCHES2022 [20]
and explore its applicability in Kyber on three low-end 32-
bit platforms: Cortex-M3 and two RISC-V platforms (SiFive
Freedom E310 and PQRISCYV). The contributions of this paper
are as follows:

1) We further enlarge the input range of the Plantard arith-
metic without modifying its computation steps, and give
the proof. After tailoring the Plantard arithmetic for
Kyber’s modulus, we show that the input range of the
Plantard multiplication by a constant can be at least
2.14x larger than the work in TCHES2022 [20].

2) We propose two optimization techniques to implement
the Plantard arithmetic utilizing the specific Instruction
Set Architecture (ISA) characteristics of Cortex-M3 and
RISC-V. The optimized implementation shows that the
Plantard arithmetic can indeed supersede the state-of-the-
art Montgomery and Barrett arithmetic on these low-end
32-bit microprocessors.

3) Based on the optimized Plantard arithmetic, we propose
an efficient CT algorithm that consumes one instruc-
tion fewer than the GS algorithm on Cortex-M3. The
optimized CT algorithm is then used to speed up
the INTT implementation on this platform. We apply
3-layer and 4-layer merging strategies to the NTT/INTT
implementation on Cortex-M3 and RISC-V, respectively.
We show that the Plantard arithmetic with an enlarged
input range enables a better lazy reduction strategy,
minimizing or entirely eliminating the modular reduc-
tion of coefficients in NTT/INTT. Our NTT and INTT
implementations achieve significant speedups compared
with state-of-the-art, with NTT/INTT achieving speedups
of 26.19%/32.57%, 34.76%/55.53%, and 22.67%/43.37%
on Cortex-M3, SiFive RISC-V board, and PQRISCYV,
respectively.

4) We provide two versions of Kyber implementations,
namely the stack-friendly (stack-version) and high-speed
(speed-version) implementations on both Cortex-M3
and RISC-V, in line with [14]. For the speed-version
implementation, we propose two memory optimiza-
tion strategies that result in a significant reduction
in stack usage, ranging between 23.50%~28.31%
compared to that of [14], making it more feasi-
ble on memory-constrained IoT devices. Overall, our
optimized Kyber implementations achieve new speed
records on both Cortex-M3 and RISC-V. Specifically,
the speed-version outperforms PQM3 by a margin
of 3.69%~5.63%, 3.51%~5.15%, and 3.37%~4.67%
for Kyber512, Kyber768, and Kyber1024, respectively,
on Cortex-M3. On PQRISCYV, it outperforms previ-
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ous work by 13.59%~27.03%, 25.49%~31.15%, and
26.96%~31.43% using only 26.86%~52.44% of their
stack usage for the three Kyber variants, respectively.
The remainder of this paper is organized as follows.
In Section II, we review Kyber and its most time-consuming
operations. In Section III, we show how to enlarge the input
range of the Plantard arithmetic and tailor it for Kyber’s modu-
lus. The optimized implementations of the Plantard arithmetic
as well as Kyber on Cortex-M3 and RISC-V are presented in
Section IV and V. We present and compare the experimental
results in Section VI. Finally, we conclude this paper in
Section VII.
Availability of Our Software: The source codes of
this paper is publicly available at https://github.com/
UIC-ESLAS/Kyber_RV_M3.

II. PRELIMINARIES

This section gives a brief introduction to Kyber, its under-
lying time-consuming operations and the target platforms.

A. Kyber

Kyber [3] is the only KEM standard in the NIST PQC
standardization project. The overall security of the scheme
is based on the theoretical security of the Module Learning
With Errors (Module-LWE) problem, which was first intro-
duced by Langlois and Stehlé [21]. Specifically, for (A, b =
ATs + e), the decisional Module-LWE problem describes
the computational difficulty of distinguishing (A, b) from a
uniform random pair, where s and e denotes the secret and
noise vectors sampled from a centered binomial distribution
Bn(R](;); A is a public matrix sampled from a uniform random
distribution U/ (R**k). The small k-dimensional matrix and
vector are introduced by the Module-LWE problem, which
helps to balance the inefficiency of LWE [22] and the potential
weakness of the structured Ring-LWE [23]. k equals 2, 3, and
4 for the three Kyber variants, respectively.

The underlying polynomial ring of Kyber is R, =
Zg[X1/(X" + 1), where ¢ = 3329 and n = 256. The
IND-CCA2-secure KEM of Kyber is constructed over an
IND-CPA public-key encryption (PKC) scheme through the
Fujisaki-Okamoto (FO) transform [24]. We refer interested
readers to [25] for details of the PKC and KEM protocols
of Kyber. Due to the introduction of the k-dimensional matrix
and vector, the matrix-vector multiplication and vector inner
product are two essential and time-consuming operations in
Kyber.

B. Number Theoretic Transform

The underlying polynomial ring and its parameter choice
(g and n) of Kyber enable efficient polynomial multiplication
with number theoretic transform (NTT). While using NTT, the
polynomial f(X) in the polynomial ring Z,[X]/f(X) can be
factored as f(X) = Hl'-‘z_olf,-(X)(modq), where f;(X) are
small-degree polynomials. To multiply two degree-(n — 1)
polynomials a,b € Z4[X]/f(X) using NTT, the first step
is to compute a; = amodf,-(X),l;i = bmod f;(X), where
i =0,---,n—1. Then, the polynomial multiplication of two
degree-n polynomials is divided into n pairs of small-degree
pointwise multiplications: dgbg, - - - , dy—1by—1. Lastly, the
inverse NTT (INTT) is used to get the result polynomial
¢ = INTT(NTT(a) o NTT(b)) in the normal domain.
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Algorithm 1 Signed Montgomery Multiplication [10]

Input: Operand a, b such that —g2'~! < ab < ¢2'~!, where
[ is the machine word size, the odd modulus ¢ € (0, 2! _1)
Output: r =ab2 ' mod g, r € (—q, q)

Le=ci2l4+cy=a-b

2 m=/co-q Ny > ¢~ !is a precomputed constant
3t =[m-q) > shift right operation
4 r=c1—1n

5: return r

For Kyber, suppose that ¢ is the primitive 256-th root of
unity, the polynomial f(X) = X>% 4+ 1 can be factored as
X0 41 = [1;20 (X? — ¢¥*1). Here, the NTT of Kyber
is a 7-layer incomplete-NTT [25] since f(X) is factored as
degree-2 polynomials instead of degree-1.

NTT’s primary component is the butterfly unit, including
two commonly-used algorithms: CT algorithm [15] and GS
algorithm [16]. CT algorithm accepts normal order input
but produces bit-reverse order output. In contrast, the GS
algorithm takes bit-reverse order input and generates normal
order output. To avoid the bit-reversal operation, the CT
algorithm is normally used in NTT while the GS algorithm
is adopted in INTT. However, recent work [14], [26] shows
that better performance could be achieved when CT algorithm
is used in INTT on Cortex-M4.

C. Modular Arithmetic

Notations: Before moving into details of the modular
arithmetic, we first describe some notations used in the remain-
ing sections. We set [ = 16 throughout the paper to support the
16-bit NTT/INTT in Kyber. We divide the modular reduction
into mod and mod*. For an integer ¢, ¢ mod ¢ generates the
modulo result of ¢ in [0, ¢), while ¢ mod® ¢ produces output
in [—qTH, 1). For simplicity, [X]; denotes (X mod* 2", and
[X]" means (X > I') for a positive integer /.

Based on whether there is a constant operand, we divide
the modular multiplication into two categories: modular
multiplication by a constant and modular multiplication of
two variables. The multiplication inside the butterfly unit
in NTT/INTT is the former case, while the latter one is
used in the base multiplication of Kyber. Previous software
implementations [9], [10], [11], [12], [13], [14] utilized the
Montgomery multiplication [17] to perform these modular
multiplications. The Barrett reduction [18] is normally used
to reduce the range of the coefficients in NTT/INTT [11],
[12], [13]. However, the Montgomery arithmetic in previous
software implementations offered the same implementation
for two kinds of modular multiplications. In 2021, Thomas
Plantard proposed the Plantard arithmetic, which offers an
efficient modular multiplication by a constant. Later in 2022,
Huang et al. [20] proposed a signed-version Plantard arith-
metic and demonstrated its applicability in LBC schemes on
Cortex-M4.

In this section, we only introduce two modular arithmetic,
the Montgomery and Plantard arithmetic, that share some
similarities. For details about the Barrett arithmetic, we refer
to [18] and its signed implementation in Kyber.! Algorithm 1

lSigned Barrett reduction in Kyber’s implementation https://github.com/pq-
crystals/kyber/blob/master/ref/reduce.c
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Algorithm 2 Signed Plantard Multiplication [20]
Input: Two signed integers a,b € [—¢2%,¢2%],q <
21—01—1 q/ — q—l modi 221
Output: r = ab(—2"2) mod® ¢ where r € [—%, )
l
e r=[(llabg ] +2%) 4]

2: return r

and 2 give brief descriptions for the signed-version Mont-
gomery and Plantard multiplication, respectively. Both of
them require three multiplications and some additions or
shift operations to complete a modular multiplication. The
outputs of them are not straightforward least positive modular
results as in Barrett arithmetic. As suggested in [9], when
Montgomery-like algorithms are used in the modular mul-
tiplication by the twiddle factor in NTT, we can store the
twiddle factor in the Montgomery or Plantard domain, namely
multiplying the twiddle factor with 2/ or 2% mod ¢. In this
way, the Montgomery/Plantard multiplication by the twiddle
factor could cancel the special term (27¢ or 272) and generate
output in the normal domain.

The biggest difference between these two algorithms is that
the product ab is only used once in the Plantard multiplication,
while it is used twice in the Montgomery multiplication. Then,
when operand b is a constant, the Plantard multiplication can
precompute the product of » and ¢~! mod 2%. Therefore,
if we can handle the [ x 2/-bit multiplication a - (bg’) in one
instruction on the target platform, the Plantard multiplication
is one multiplication fewer than the Montgomery and Barrett
arithmetic. Apart from this advantage, Huang et al. [20] further
improved the Plantard arithmetic’s input range and output
range, making it a better modular arithmetic in LBC schemes.

D. Target Platforms: Cortex-M3 and RISC-V

The ARM Cortex-M3 platform we use is Due and Core
which integrates an Atmel SAM3 x 8E core [27]. It comprises
96 KiB of RAM and 512 KiB of Flash, and operates at a
maximum frequency of 16 MHz. Similar to Cortex-M4, the
Cortex-M3 platform has 16 32-bit general-purpose registers,
of which fourteen are programmable. However, it doesn’t
provide any floating-point (FP) registers and SIMD extensions.
It should be noted that there are some non-constant-time
instructions like umull, smull, umlal and smlal [28] that we
need to avoid using during the cryptographic implementation,
otherwise it may suffer from timing attacks. The only two
“secure” multiplication instructions one can use in this plat-
form are the mul and mla instructions for computing the low
32 bits of the 64-bit product. The mul instruction costs one
cycle while the mla instruction takes two cycles. Most of the
other instructions are 1-cycle, while the memory access oper-
ations such as ldrh, ldr, ldrd, strh, str and strd are relatively
expensive. Loading or storing half-word/word requires two
cycles, and loading or storing double-word (Idrd/strd) takes
three cycles. Cortex-M3 also provides a useful inline barrel
shifter operation, similar to Cortex-M4, which performs an
additional shift operation before the addition and subtraction
instructions, without additional overhead. For instance, the
instruction (add.w rd, rn, rm, asr #16) first right-shifts the
operand rm by 16 bits, and subsequently, the addition is
performed using the right-shifted result.
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RISC-V is an open-source standard Instruction Set Architec-
ture (ISA), enabling a new era of processor innovation through
open collaboration. Because of its open-source features, it has
attracted huge attention from both research community and
industry. We select two RISC-V platforms as the bench-
mark platforms. The first one is the SiFive Freedom E310
board, which integrates a 32-bit E31 RISC-V core [29]. The
RV32IMAC instruction set is instantiated in this core. This
platform is a memory-constrained IoT device with only 16KiB
of RAM, making it a suitable platform for measuring the
performance and applicability of LBC schemes on low-end
IoT devices. The second platform is a RISC-V simulator
based on VexRiscv,? as described in pqriscv-vexriscv® and
used in PQRISC.* The RV32IM instruction set is instantiated
in this simulator. In the following sections, we will denote
the VexRiscv RISC-V simulator as PQRISCV. Both platforms
comprise of 32 32-bit general-purpose registers, of which
thirty are programmable. Similar to the Cortex-M3 platform,
they do not have powerful SIMD extensions. The cycle counts
of some instructions of PQRISCV are not well-specified in the
documents, so we will not discuss them in detail. The cycle
counts mentioned below only refer to the SiFive board. There
are only two multiplication instructions (mul, mulh) that can
be used, and both of them take five cycles on the SiFive board.
Loading or storing one word (Iw, sw) requires two cycles
while loading or storing one half-word or byte (lh, lhu, lb,
lu) takes three cycles. Apart from the multiplication, division,
and memory access operations, most of the other instructions
consume one cycle. All instructions are constant-time except
the division.

III. IMPROVEMENTS ON PLANTARD ARITHMETIC

In this section, the detail of the Plantard arithmetic with
enlarged input range will be introduced. And this improved
version is further tailored for Kyber’s modulus.

A. Plantard Arithmetic With Enlarged Input Range

We observe that the signed-version Plantard multiplication
(see Algorithm 2) proposed in [20] accepts inputs a, b in
range [—¢2%, q2%]. By replacing ¢ < 2/=~! into the range
of a,b, we can see that it approximately covers most of
the [-bit signed integers (—2/~', 2/~1). Therefore, the Plan-
tard reduction, which takes a - b as input, can only accept
input in (—221_2,221_2), and it cannot cover all the 2/-bit
signed integers (i.e., [—22/—1 22I-1}) " As mentioned before,
the coefficients in the NTT/INTT implementation in [20]
cannot overflow 16-bit signed integer due to the use of the
SIMD extension on Cortex-M4. Therefore, the signed-version
Plantard arithmetic proposed in [20] is already quite sufficient
for the implementation on Cortex-M4. However, their imple-
mentation did not fully utilize the large input range, which
is larger than the maximum bound of a 16-bit signed integer,
of the Plantard multiplication by a constant [20, Algorithm
11]. On the contrary, the implementation on low-end 32-bit
platforms stores each coefficient in a 32-bit register. It enables

2https://github.(:0m/SpinalHDL/VexRiscv
3https://github.com/mupq/pqriscv-ve:xriscv
4https://github‘com/mupq/pqriscv
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Algorithm 3 Plantard Multiplication With Enlarged Input
Range

Input: Two signed integers a,b such that ab € [q2! —
qzl-ﬁ-c{, 221 _ q21+a)’ g < 21—01—1’ q/ — q—l modi 221
Output: r = ab(~2~%)mod* ¢ where r € [-2F, %)
I
L= [([[dbq/]zz]l + 2"‘) 61]

2: return r

us to temporarily overflow 16-bit signed integer and fully
utilize the large input range of the Plantard arithmetic.

Through carefully theoretical analysis, we found that one
can maximize the input range of the Plantard arithmetic and
tailor it for a specific modulus, which contributes to a better
NTT/INTT implementation on low-end 32-bit platforms. The
proposed Plantard multiplication with enlarged input range
is shown in Algorithm 3. The proposed algorithm does not
modify any computation steps compared with Algorithm 2,
except that we manage to further enlarge the input range
of ab from [—g22%, ¢?22*] to [¢2! — q2!te, 22 — g2!lt),
Specifically, by replacing ¢ by ¢ < 2!=%~1 in the above input
ranges, one could get a at least two times larger input range
compared to the original design.

B. Theoretical Proof

Note that in 2024, Yang et al. [30] identified a misuse
of the floor and ceiling functions in the correctness proof
of improved Plantard arithmetic in [20]. The authors of the
improved Plantard arithmetic then updated their correctness
proof to rectify this issue in their eprint version [31]. The main
update they made to the algorithm was to ensure & > 0 instead
of @ > 0 in the original paper. Mostly, the theoretical proof of
the Plantard multiplication with enlarged input range is similar
to the one given in [19], [20], and [31]. Theorem 1 shows the
correctness of Algorithm 3.

Theorem 1 (Correctness): Let g be an odd modulus, / be
the minimum word length (i.e., power of 2 number) such that
qg < 2l=e¢=1 where o > 0, then Algorithm 3 is correct for
ab € [qzl _ qzlJrot7 22 _ q21+a)‘

Proof of Theorem 1: All preconditions in Algorithm 3
remain the same as in Algorithm 2 except the range of ab.
We show that the input range of the Plantard multiplication
can be maximized without modifying any computation steps.
Similar to the proof in [20], the correctness of this algorithm
depends on the following four conditions:

(i) rel-5+ %);
(ii) pg — ab is divisible by 2%, where p = abg™" mod 2%;

(i) 0 < ¢2"** — pog + ab < 2%, where p; = H—/J

po = p — p12!. Because the right-shift of the signed
integer always rounds the result towards negative infinity,
we always have pg € [0, 2h.

(iv) r = ab(=2"%)mod* ¢.

Since we do not modify any preconditions and computation
steps of the Plantard multiplication, the first two conditions
remain true. More specifically, for condition r € [—%, %),
since L“bq,n‘zﬂj is the only part containing ab and it is still
in [—2

2L "4y For condition that pg — ab is

—1,2/=1 _1] even though the range of ab is increased.
So, r is still in [— > %
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divisible by 2%, because ¢ is an odd modulus, there always
exist a p = abg~' mod2? such that pg — ab = Omod2%.
So, this condition is also valid.

The third condition is the most important part that demon-
strates the correctness of the Plantard multiplication. In order
to maximize its input range, we first assume that this condition
holds for a new range of ab, i.e.,

0 < g2 — pog +ab < 2%, €))

where g < 2!7%1 p = abg~' mod* 2%, p; = L%J ,Po =
p — p12t, po € [0,2)) and o > 0. Then, we can deduce the
maximum input range of ab through Inequality (1) as follows.

e When ab > 0 and 0 < pyp < 2! to ensure that
the Inequality (1) holds, for the left-hand side of the
inequality, we have:

g2t — pog +ab > g2t — pog > 27 — g2 > 0,

which always holds for « > 0. As for the right-hand side,
we have:

g2t — pog +ab < g2+ +ab < 2%,

To ensure that the Inequality (1) holds, we conclude that
ab < 22 — golte,

e When ab < 0 and 0 < po < 2, for the right-hand side,
we have:

q21+01 — Pog +ab < q21+0( < 2170(7121+Ol < 221’

which always holds for & > 0. As for the left-hand side,
we have:

g2 — pog +ab > q2'T% — ¢2! + ab > 0.

To ensure that the Inequality (1) holds, we conclude that
ab > q2l — q2l+°‘. Therefore, the Inequality (1) is valid for
every ab € [q2} — g2/ 2% — 42!*%) By dividing every
components in Inequality (1) by 2%, we can get

q2!™% — pog + ab
221

0< < 1.

Overall, we conclude that

—ab
r=ab (—2721) modg = quTa

_ | pa—ab g2 — pog +ab
= 921 721

g (abq’l mod* 2% + 20,)

2l
2l

Finally, we obtainl that »r = ab(—2’2’) mod* qg =
[([[abq’ ]21]l + 2“) q] for signed inputs a and b that satisfy

ab € [6]2[ _ q21+017 22 _ q21+a)'
]
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C. Plantard Multiplication by a Constant Tailored for Kyber

As mentioned before, Plantard arithmetic enables efficient
modular multiplication by a constant in NTT/INTT, where
the constant is the precomputed twiddle factor. During pre-
computation, one could always make sure that the twiddle
factors are reduced to [0,g). As the product ab lies in
[g2! — g2!te 22 — 2!+ when we limit the constant b in
[0, g), the input range of a can be further enlarged.

For Kyber, we have ¢ = 3329, [ = 16. To ensure that
modulus restriction g < 2/=e=1 holds, the maximum o is
equal to 3. Besides, the maximum value of b (i.e. bpq4y) 1S
equal to 3328 in Kyber. Overall, we can deduce the maximum
and minimum value of a by:

amax < (2% = q2"7%) /by
= (2% — 3329 x 29)/3328 ~ 230.134.
amin > (q2" = q2"7%) /byax
= (3329 x 2'© — 3329 x 2!%)/3328 ~ —137.854.

Thanks to our improvements, the modular multiplication
by a constant in Kyber supports input of range a €
[—137g, 230g]. Compared to the range [—64q,64g] in
[20, Algorithm 11], the input range of the Plantard multi-
plication by a constant tailored for Kyber is at least 2.14x
larger.

IV. EFFICIENT PLANTARD ARITHMETIC FOR 16-BIT
MoDULUS ON CORTEX-M3 AND RISC-V

The efficient Plantard arithmetic on Cortex-M4 [20] was
dependent on the SIMD instruction smulw{b,t} for carrying
out the 16 x 32-bit multiplication [a x bq’]y;. Here, a denotes
a 16-bit signed integer and bq’ represents a precomputed
32-bit positive integer. In [20, Algorithm 16], Huang et al.
also presented a 5-instruction implementation of the Plantard
multiplication by a constant on RISC-V. They concluded that
in cases where multiplication instruction is slower than the
shift instruction, the Plantard arithmetic has better performance
than the Montgomery and Barrett arithmetic. In this section,
we propose two optimization techniques to improve the per-
formance of the Plantard arithmetic based on the specific ISA
characteristics of Cortex-M3 and RISC-V, respectively. These
optimization techniques show that the Plantard arithmetic can
outperform the Montgomery and Barrett arithmetic without the
prerequisite of slow multiplication. This is demonstrated by the
efficient implementation of Plantard arithmetic on Cortex-M3,
where both multiplication and shift instructions take one cycle.
Notably, the efficient implementation of Plantard arithmetic is
not restricted to Kyber’s modulus and can be customized for
other 16-bit odd moduli as well.

A. Plantard Multiplication by a Constant

The first optimization technique is proposed for effi-
cient Plantard multiplication by a constant on Cortex-M3
(Algorithm 4). Unlike the Plantard multiplication by a constant
on Cortex-M4 [20, Algorithm 11], this algorithm accepts a
32-bit signed integer as input on low-end 32-bit platforms.
If one implements the multiplication [a x bq'ly with the
32 x 32-bit multiplication instruction mul, the valid product
locates in the most significant half of the 32-bit register r.
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Then, one need to shift the valid product to the least positive
half so as to compute the later steps. The above shift operation
might decrease the efficiency of Plantard arithmetic, as it
consumes an extra cycle. In order to improve the efficiency,
we propose to merge this shift operation with the “add to 2*”
step by utilizing the inline barrel shifter operation on Cortex-
M3 (cf. line 3 of Algorithm 4). This operation initiates by
right-shifting register r by 16 bits. Thereafter, the addition of
2% is directly carried out in the same cycle. After that, the
remaining operations are computed by using just one mul-
tiplication and one right-shift instructions. In Section V-A.1,
a similar technique will be proposed to omit the final shift
operation in the CT algorithm on Cortex-M3.

The second optimization technique for the Plantard multipli-
cation by a constant is carried out on RISC-V, as demonstrated
in Algorithm 5. Similar to the algorithm on Cortex-M3,
we also utilize the 32 x 32-bit multiplication instruction
mul to implement the multiplication [a x bg']y;. As RISC-V
does not provide inline barrel shifter operation as in Cortex-
M3, we perform the right-shift operation and the addition
of 2% separately. Then, instead of computing [rg]’ with one
multiplication and one shift similar to the final two steps in
Algorithm 4, we propose to precompute g2 = g x 2!, which
is inspired by the similar technique of Montgomery arithmetic
proposed in [32]. This technique utilizes the fact that [rq]l is
equivalent to [rg2'1%, and the division by 2% operation can
be implemented by using one mulh instruction. Note that this
optimization technique cannot be applied to Cortex-M3 as it
does not offer constant-time full multiplication instruction, but
it can be securely extended to other platforms as long as the
targeted platform has constant-time mulh instruction.

For platforms that lack of inline shifter and mulh instruc-
tions, if there is an efficient and constant-time mla instruction
to handle the multiply-and-add operation, it is also possible to
merge step 4 and 5 in Algorithm [20, Algorithm 16]. But we
choose not to do it on Cortex-M3 since the mla instruction
use two cycles on this platform, which will make this version
slower than that in Algorithm 4.

In summary, the efficient Plantard multiplication by
a constant on both Cortex-M3 and RISC-V take four
instructions, including two multiplications, one shift and one
addition. Compared to the existing Plantard and Montgomery
multiplication on RISC-V or Cortex-M3 [20], [32], [33] that
take five instructions, the proposed implementation is one
multiplication fewer.

B. Plantard Reduction

We propose a 4-instruction Plantard reduction for the mod-
ular multiplication of two variables on both architectures,
which is equally efficient as the state-of-the-art Montgomery
or Barrett reduction in [32] and [33]. The proposed instruction
sequence of the Plantard reduction is similar to Algorithm 4
and 5, except that the 32-bit precomputed constant bg’ is
replaced by ¢~! mod 2% in the modular multiplication of two
variables or (—2% mod ¢)xg~! mod 2% in the modular reduc-
tion of coefficients. This variant of modular multiplication
is used in the base multiplication of Kyber. Besides, previ-
ous implementations mostly utilize the Barrett reduction to
implement the modular reduction of coefficients. Nevertheless,
despite the same cycle consumption as the Barrett reduction
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Algorithm 4 Efficient Plantard Multiplication by a Constant

for Kyber on Cortex-M3

Input: An 32-bit signed integer a € [—137¢q, 230¢], a pre-
computed 32-bit integer bg’ where b is a constant and
q _ 6171 modi 232

Output: r = ab(—2~ 2l)modjt

1: bg' < bg~"mod 2% > precomputed
2: mul r, a, bq’ > r < [abq'ly
3. add r, 2%, r, asr#16 b r <« ([r]' +2%)
4: mul r,r,q

5. asr r, r, #16 > r < [rqgl
6: return r

Algorithm 5 Efficient Plantard Multiplication by a Constant

for Kyber on RISC-V

Input: An 32-bit signed integer a € [—137¢, 230¢], a pre-
computed 32-bit integer bq’ where b is a constant and
¢ =g 'mod2*? g2! =g x 2!

Output: r = ab(—2~ 2l)modjt

1: bg' < bg~' mod* 2% > precomputed
2: mul r, a, bq’ > r < [abq'ly
3. srai r, r, #16

4 addi r, r,2¢ > r <« ([r]' +29
5: mulh r, r, q2[ > < [rq2’]2[
6: return r

on Cortex-M3 and RISC-V, we chose to adopt the Plantard
reduction for the sake of consistency.

V. OPTIMIZED KYBER IMPLEMENTATION
ON CORTEX-M3 AND RISC-V

Based on the efficient Plantard arithmetic presented in
Section IV, we propose a number of optimizations that are
geared towards improving the efficiency and reducing the
memory consumption of Kyber on Cortex-M3 and RISC-V.

A. Efficient 16-Bit NTT/INTT Implementation

This section presents efficient 16-bit NTT/INTT implemen-
tations on Cortex-M3 and RISC-V.

1) Butterfly Unit: To integrate the Plantard arithmetic to the
butterfly unit, we follow the method described in [20] to pre-
compute the 32-bit twiddle factor as ¢ = ((¢ - (—=2%y mod q) -
g~") mod* 2. For two signed coefficients a and b, the CT
algorithm computes a’ = a + b¢ and b’ = a — b¢, while the
GS algorithm computes @’ = a + b and b’ = (a — b) - ¢.
We present the efficient implementations of CT algorithm on
Cortex-M3 and RISC-V in Algorithm 6 and 7, respectively.
The instruction sequence for the GS algorithm is similar, hence
we will not discuss it in detail.

We demonstrated that by utilizing the inline barrel shifter
operation on Cortex-M3, one could omit the final shift opera-
tion in Algorithm 4 and achieve an efficient 5-instruction CT
algorithm with the Plantard arithmetic. Conversely, the GS
algorithm cannot benefit from the barrel shifter operation due
to the operation difference. Specifically, GS algorithm requires
one more instruction compared to the CT algorithm. Neverthe-
less, it is worth highlighting that both CT and GS algorithms

Algorithm 6 CT Algorithm on Cortex-M3
Input: Two signed integers a, b, the 32-bit twiddle factor ¢
Output: ¢’ =a+ b, b =a — bt
1: mul b, b, ¢
2: add b, 2%, b, asr #16
33 mult, b, g
4: sub b, a,t, asr #16
5
6

- add d’, a, t, asr #16
. return a’, b’

are one instruction fewer than their Montgomery-based coun-
terparts on Cortex-M3 [33]. Since the CT algorithm costs one
instruction fewer than the GS algorithm, it motivates us to also
adopt it in INTT.

Following similar optimization strategies outlined in [14]
and [26], in order to minimize the side-effect of additional
twists in the last layer of INTT using CT algorithm, light
butterfly was proposed and applied in the first three layers of
INTT. The so-called light butterfly is to reduce the modular
multiplication by the twiddle factor in the CT butterfly, i.e.,
only computing a’ = a + b and b’ = a — b. Additionally,
they suggested that using CT algorithm in INTT could also
help to decrease the number of modular reductions and yield
a superior INTT implementation on Cortex-M4 [14]. After
applying the CT algorithm to INTT of Kyber, we further
validate its extensibility on Cortex-M3. It is worth to note that
we are the first to apply the above improved CT algorithm to
INTT on Cortex-M3.

Algorithm 7 demonstrates the instruction sequence of the
CT algorithm on RISC-V. Unlike the implementation on
Cortex-M3, the GS and CT algorithms are equally efficient
on RISC-V. Initially, we also contemplated the use of CT
algorithm in INTT on RISC-V; however, the results indicated
that the INTT with CT algorithm cannot outperform the
GS one. The crucial reasons for that are two-fold. Firstly,
the use of CT algorithm in INTT results in the doubling
of the twiddle factors, which increases the memory access
overhead. Specifically, in our implementation, the INTT with
CT algorithm consumes 61 additional memory accesses for
the twiddle factors, which reduces its efficiency and warrants
a further 0.5KiB memory to accommodate these extra twiddle
factors. The extra memory cost also increases the difficulty of
deploying Kyber on memory-constrained platforms. Secondly,
the number of modular reduction in INTT with GS algorithm
has been significantly reduced by using Algorithm 3 on RISC-
V (see the better lazy reduction strategy in Section V-A.3 for
detailed discussions). Thus, there left only a small space for
further optimization through the utilization of CT algorithm
in INTT.

In summary, the optimal combination of butterfly usage on
Cortex-M3 is to apply CT algorithm on both NTT and INTT.
On the other hand, the most effective pattern on RISC-V is to
use CT algorithm on NTT but GS algorithm on INTT.

2) Layer Merging: Layer merging is an essential optimiza-
tion strategy in NTT/INTT when memory access operations
are costly. This strategy effectively reduces the expensive
memory access by loading multiple coefficients at once and
processing more NTT/INTT layers over these coefficients.
The design of optimal layer merging strategy depends on
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Algorithm 7 CT Algorithm on RISC-V

Input: Two signed integers a, b, the 32-bit twiddle factor ¢
Output: ¢’ =a+ b, b =a — bt

:mul b, b, ¢

srai b, b, #16

addi b, b, 2¢

mulh 7, b, 2!

sub b, a,t

add ¢, a,t

return a’, b’

A O i

the number of available registers on the target platform.
For example, fourteen registers are programming-available
on Cortex-M3. Thus, a maximum of eight coefficients can
be loaded at once, allowing to merge three layers of
NTT/INTT on this platform. The remaining six registers
are utilized to store addresses or execute the modular arith-
metic in the butterfly unit. On RISC-V, an abundance of
30 programming-available registers are provided with greater
flexibility. Therefore, sixteen coefficients can be loaded at
once, allowing to merge four layers of NTT/INTT at once, and
there are still 14 registers left for other usage. Consequently,
the 4-layer merging strategy is better on RISC-V.

In summary, for the 7-layer NTT/INTT in Kyber, we adopt
the 3+3+1 and 34143 layer merging strategy for NTT and
INTT, respectively, on Cortex-M3. The motivation behind the
choice of the 3+1+3 layer merging strategy instead of 3+3+1
will be discussed in Section V-A.3. On the other hand, the 4+3
and 3+4 layer merging strategy are used for NTT and INTT
on RISC-V, respectively.

3) Better Lazy Reduction: The so-called “lazy reduction
strategy” means deferring the modular reduction of coefficients
until the value of coefficients exceed the maximum bound of
the register or the input range of the subsequent operation. The
input range of the modular multiplication by a constant in the
butterfly unit is particularly crucial in facilitating this strategy.
The NTT implementation with CT algorithm algorithm using
Plantard arithmetic only increases the coefficients by 3.5g.
The large input range and small output range of Plantard
arithmetic enables us to eliminate all the modular reductions
of coefficients in NTT on Cortex-M3 and RISC-V. This is a
noteworthy improvement compared to the Montgomery-based
NTT implementation, which requires one modular reduction
for all coefficients. Therefore, the focus of this study is on
the exploration of better lazy reduction strategy for INTT on
Cortex-M3 and RISC-V.

An even better lazy reduction strategy is designed for
INTT in this work, compared to the version on Cortex-M4
in [20]. Two main factors contribute to this new design.
Firstly, Huang et al. [20] utilized the SIMD extension of
Cortex-M4 to speed up NTT/INTT; thus the coefficient in
INTT cannot exceed the bound of a 16-bit signed inte-
ger. For Kyber’s modulus ¢ = 3329, the coefficients must
stay within [—9.5¢, 9.5¢]. However, on the low-end 32-bit
platforms that lack of SIMD extension, each coefficient is
loaded to a 32-bit register, which has the potential to tem-
porarily overflow 16-bit signed integer range before it is
stored back to a 16-bit memory. Secondly, the input range
of the Plantard arithmetic is enlarged from [—64q, 64g] in
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[20, Algorithm 11] to [—137¢q, 230¢q], which allows for a
“lazier” modular reduction.

a) Input polynomial of INTT: Before moving to the
detailed strategy, let’s analyze the coefficient size of the input
polynomial of INTT first. It is worth noting that matrix-vector
multiplication and vector inner product are the two operations
that could expand the coefficient size of INTT’s input polyno-
mial. The resulting polynomial of these two operations must
add up k intermediate polynomials, where k equals 2, 3, 4 for
the three Kyber variants, respectively. Abdulrahman et al. [14]
proposed two versions of implementations for these two
operations and its underlying pointwise multiplication: the
stack-version and the speed-version. In this study, we apply
the Plantard arithmetic to both versions of implementations.

o The stack-version process involves reducing each inter-
mediate polynomial and accumulating k reduced polyno-
mials together, which generates an “unreduced” polyno-
mial (i.e., every coefficient of the polynomial is beyond
the output range of modular reduction). When imple-
mented with the Plantard arithmetic, the stack-version
matrix-vector product and vector inner product produce
coefficients within the range (—kq /2, kq/2).

o The speed-version implementation is built on top of
the stack-version implementation. An intermediate 32-bit
array is used to cache the sum of k intermediate poly-
nomials, and this intermediate result is reduced after the
accumulation process, producing a “reduced” polynomial
(i.e., every coefficient is in the output range of modular
reduction). When implemented with the Plantard arith-
metic, the speed-version code generates coefficients in
the range (—q/2,q/2).

b) Better lazy reduction on RISC-V: We first introduce
a better lazy reduction strategy for INTT on RISC-V. Since
INTT is computed by using GS algorithm in combination with
the 344 layer merging strategy on RISC-V, after the third
layer of INTT, the coefficients have to be stored back to 16-bit
signed integers in memory. Therefore, we need to analyze the
coefficient size to ensure that they can fit in 16-bit signed
integer after the third layer of INTT.

Fig. 1 demonstrates the first 16 coefficients of the first three
layers of a length-128 INTT implemented via GS algorithm.
Since the input coefficients of the stack-version INTT are
within the bound (—kgq/2,kq/2), we let the red number
x in Fig. 1 equal to kg/2, which is the largest absolute
value of the input range. After three layers of GS butterflies
computation, the first 2 coefficients (out of 16 coefficients)
are expanded up to 8x, namely 4kq. In the case of Kyber512
(k = 2), the term 4kq is equal to 8¢, and it does not
overflow 16-bit signed integer after the third layer. The later
four layers of INTT produce coefficients that reach up to
1284, which exceeds the input range of the Plantard arithmetic
in [20, Algorithm 11] [—64¢g, 64¢], but remains within the
input range of the proposed Plantard arithmetic with enlarged
input range [—137¢g, 230q]. These coefficients will be reduced
by the modular multiplication with the twiddle factors and
128! in the last layer of INTT. Hence, modular reduction
can be completely avoided in the INTT of Kyber512. As for
Kyber768 and Kyber1024, where k = 3 and k = 4 respec-
tively, the term 4kg is equal to 12¢g and 16g, respectively.
Both 12¢ and 16g overflow a 16-bit signed integer. Therefore,
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Fig. 1. Example of the first 16 coefficients of the first three layers of
a length-128 INTT using GS algorithm on RISC-V. g; and a; represent
coefficients of polynomial a. The red number x in upper left corner represents
the maximum absolute value of the input coefficient of INTT. Dashed
rectangle represents GS butterflies of various step size; the computation details
of GS butterfly are described in the topmost dashed rectangle. The blue
number on the left-hand side of the rectangle indicates the step size of the
butterfly unit, while the red number represents the maximum absolute value
of the corresponding coefficients after the computation of each layer.

modular reductions are needed for these coefficients (2 out of
16). Due to the symmetric property of INTT, the entire INTT
for Kyber768 and Kyber1024 requires modular reductions for
256 x 2/16 = 32 coefficients only. By using the 3+4 layer
merging strategy, the last four layers of INTT only expand
some coefficients, e.g., ap and a3 in Fig. 1, from 2q up to
32q. These coefficients will also be reduced by the modular
multiplication with the twiddle factors and 128! in the last
layer of INTT. Therefore, no further modular reduction is
needed.

The input coefficients of the speed-version INTT are within
the bound (—g/2, g/2) for all three Kyber variants. We let the
red number x in Fig. 1 equal to ¢g/2, which is the largest
absolute value of the input range. After three layers’ com-
putation, the absolute value of these coefficients are smaller
than 8x = 4¢, which is well below the maximum value of a
16-bit signed integer and can be securely stored back to the
16-bit memory. After seven layers of INTT computation by
using GS algorithm, these coefficients are expanded to 64q.
However, this is still within the input range of the proposed
Plantard arithmetic. Thus, we are able to eliminate all the
modular reduction of the speed-version INTT for the three
Kyber variants.

c) Better lazy reduction on Cortex-M3: We now describe
a better lazy reduction strategy for INTT on Cortex-M3. The
INTT on Cortex-M3 is computed by using CT algorithm in
combination with the 34143 layer merging strategy. After
the third and fourth layer of INTT, the coefficients have to be
stored back to 16-bit signed integers in memory. Therefore,
we need to analyze the coefficient size and ensure that they
can fit in 16-bit signed integer after the third and fourth layer.

Fig. 2 illustrates the first 8 coefficients of the first three
layers of a length-128 INTT by using light butterfly and
CT algorithm. As shown in the topmost dashed rectangles
of Fig. 2, the light butterfly proposed in [14] only involves
one addition and one subtraction, omitting one modular
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Fig. 2. Example of the first 8 coefficients of the first three layers of a
length-128 INTT by using CT algorithm on Cortex-M3. a; and a; represent
coefficients of the polynomial a. The red number x in upper left corner
represents the maximum absolute value of the input coefficient of INTT.
Dashed rectangle represents light or CT butterflies of various step size; the
computation details of light butterfly and CT algorithm are described in
the topmost two dashed rectangles; the butterflies with black crossing line
denote light butterfly while the butterflies with red crossing line represent
CT algorithm; the red number represents the maximum absolute value of the
corresponding coefficients after the computation of each layer.

multiplication by the twiddle factor of the CT algorithm.
Consequently, each light butterfly will double the size of both
coefficients while each CT butterfly will only increase each
coefficient by 0.5¢g. For the stack-version INTT implemen-
tation, the absolute value of the input coefficients is smaller
than kg/2. If we let the red number x in Fig. 2 equal to
kq /2, the computation of three layers INTT would expand
256 x 2/8 = 64 coefficients (e.g., ap and a4 in Fig. 2) up
to 8x = 4kq. Similar to the analysis in Section V-A.3.b, the
term 4kg overflows a 16-bit signed integer for Kyber768 and
Kyber1024. Therefore, one might need modular reductions for
64 coefficients after the third layer of INTT. However, in order
to minimize the number of modular reductions, we curtail half
of the modular reductions by performing modular reductions
for 256 x 1/8 = 32 coefficients (e.g., ap in Fig. 2) after
the second layer of INTT. After that, ap is reduced down
to 0.5¢, and the third layer of INTT would only expand
ap and a4 in Fig. 2 up to 4x + 0.5g, which is equal to
6.5¢g/8.5¢q for Kyber768/Kyber1024. These numbers could fit
in 16-bit signed integers. Since we use the 3+1+3 layer
merging strategy and adopt the CT algorithm in the fourth
layer, the fourth layer of INTT with CT algorithm would only
increase the coefficients by 0.5¢. Therefore, the maximum
absolute value of coefficients is 9¢ after the fourth layer, which
can still fit in a 16-bit signed integer. The reason why we adopt
the 3+14-3 layer merging strategy instead of 3+3+4-1 is that it
limits the growth of coefficients and obviates the need for more
modular reductions. If we adopt the 3+3+1 layer merging
strategy, the second three layers of INTT with CT algorithm
would expand 256 x4 /8 = 128 coefficients (e.g., ag, az, a4 and
ae in Fig. 2) up to 10g, which will overflow a 16-bit signed
integer, thus necessitating more modular reductions.

The final three layers of INTT in the 34143 layer merging
strategy increase the coefficients up from 9¢ to 72q. It should
be noted that 72g likewise surpasses the input range of
[—64q, 64¢q] in Plantard arithmetic [20, Algorithm 11], but
can still fit into the input range [—137¢g, 230¢] of the proposed
Plantard arithmetic. This further demonstrates the contribution
of the larger input range to the better lazy reduction strat-
egy. Similar to the INTT using GS algorithm on RISC-V,
we also eliminate the modular reduction of coefficients for
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the stack-version INTT of Kyber512 and speed-version INTT
of all three Kyber variants on Cortex-M3.

Overall, we only need modular reduction for 32 coefficients
in the stack-version INTT of Kyber768 and Kyber1024 on
both platforms. Conversely, we entirely eliminate the mod-
ular reduction of coefficients in the stack-version INTT of
Kyber512 and the speed-version INTT of all three Kyber
variants. The better lazy reduction strategy is made possible
by leveraging the excellent merits of the Plantard arithmetic,
the optimal layer merging strategies, and the 32-bit platforms’
properties.

B. Pointwise Multiplication and Memory Optimizations

1) Pointwise Multiplication: After the 7-layer NTT trans-
form, two polynomials a and b are transformed into their
NTT domain a and b. The pointwise multiplication ¢ =
a o b is performed over Z, [X1/(X? — ¢2br7®+1y The symbol
bry(i) denotes the bit reversal operation of a 7-bit integer
i € [0,127] to obtain the corresponding twiddle factor.
The symbol o consists of 128 pointwise multiplications, and
each of them is performed as ¢y + ¢2i+1X = (az +
a2i—L—1X)(l;2i -h132i+1X) mod (X2 — g2+ “where & =
Goiboi +a2i11b2i 412227 D T and 6341 = Gibai1 +b2iGiy1-
As mentioned in Section V-A.3, to align with the stack-version
and speed-version matrix-vector multiplication, we also imple-
ment two versions of pointwise multiplications for Kyber.

For the stack-version pointwise multiplication, we follow
the lazy reduction strategy proposed in [12], namely ¢y =
(a2 ‘E2£+&2i+1 '£52i+1 270+ mod ¢)) mod g and ¢yi41 =
(a2i - bajy+1 + by - aziy1) mod g. In total, three modular
reductions are required for each pointwise multiplication and
the result is stored in 16-bit array. We can see that the
computation of 132i+1 27O+ mod ¢ is a modular multi-
plication by a twiddle factor ¢2°7@W+! and can be speeded
up with the efficient Plantard multiplication by a constant
(Algorithm 4 and 5). Overall, compared to the Montgomery-
based implementation, we can utilize the Plantard arithmetic
to reduce 128 multiplications in the stack-version pointwise
multiplication implementation. The other two modular reduc-
tions, on the other hand, can only be implemented with the
Plantard reduction (see Section IV-B). Note that the proposed
Plantard reduction is as efficient as the state-of-the-art Mont-
gomery and Barrett reduction on the target platforms. After
the Plantard reduction, the coefficient range of each pointwise
multiplication lies in [—%, .

As for the speed-version implementation, we follow the
asymmetric multiplication and a better accumulation strategies
in [14] and [26], which help to further minimize the num-
ber of modular multiplications or modular reductions, with
nearly doubled the stack usage. The so-called asymmetric
multiplication is that during the matrix-vector product As
in Kyber, they [14], A[26] observed that every row of the
NTT-domain matrix A needs to multiply the NTT-domain
secret vector § (vector inner product) for k times. For the
pointwise multiplication of two NTT-domain polynomials a o
§ = ¢, the term §p11¢2°7@F1 also needs to be computed
k times throughout the process. Therefore, they proposed to
reduce these computations by caching §p;,1¢2°7*! using an
additional polynomial vector §'. When § is multiplied with the
first row of matrix A, the term 551 -¢2?7®+1 mod ¢ for each

3809

polynomial of the vector § is computed and stored in §'. Similar
to the stack-version implementation, this computation can also
be speeded up with the efficient Plantard multiplication by
a constant. The follow-up vector inner products of § with
the remaining k — 1 rows of matrix A can directly load the
corresponding §; 1 122°7@F! from § without re-computing
the modular multiplication.

Similarly, the better accumulation technique also trades the
speed with extra memory. This technique is utilized in the
vector inner product, i.e. c = ax§ = Zf‘;(} a;oSi, k € {2,3,4},
which requires to accumulate k pointwise multiplications.
Abdulrahman et al. [14, Section 3.4] showed that one can
reduce the final modular reduction of c¢p; and c¢;+1, namely
only computing éy; = ao; -boi +ai1-(hai41-¢7 O+ mod ¢)
and ¢y 41 = ay; ~l;2i+1 + by -dpi+1, and then accumulate these
k pointwise multiplications together in a 32-bit array with
256 entries without overflowing 32-bit signed integers. The
k-th pointwise multiplication will finally reduce each 32-bit
coefficient down to 16-bit using the Plantard reduction. After

that, the coefficient range of the vector inner product lies in
+1 ¢
(== D).

2) Memory Optimizations: The speed-version Kyber imple-
mentation from [14] utilizes the asymmetric multiplication
and better accumulation techniques in [26] to minimize the
number of modular multiplications or modular reductions.
However, these techniques double the stack usage and pose
a challenge for its deployment on memory-constrained IoT
devices. In this paper, we propose two memory optimized
techniques for the speed-version implementation to address
this concern and make it more feasible for such devices.

The first memory optimized technique is carried out for
the asymmetric multiplication technique. Recall that Abdulrah-
man et al. [14], [26] proposed to cache the term §2i+1{2br7(i)+]
using an additional polynomial vector §'. To make use of the
SIMD instruction smuad on Cortex-M4, they also stored a
redundant §y; together with each $;11¢2P7®+! in §. This
leads to the increment of memory usage, as the redundant $y;
term has already existed in the original polynomial vector §.
In this work, we show that the extra memory space is unneces-
sary on low-end 32-bit platforms. We propose using poly_half
and polyvec_half to cache §»i41¢2P7@+1 only, where each
poly_half consists of 128 instead of 256 coefficients and each
polyvec_half consists of k poly_half. Our approach results
in a halving of stack usage to cache the temporary terms.
Specifically, by using the polyvec_half to cache all terms
$2i41 §2br7([ )*1 for one secret vector in the speed-version code,
we could reduce the stack usage by 0.5KiB, 0.75KiB, and
1KiB, in three PKC protocols of Kyber512, Kyber768, and
Kyber1024, respectively.

In addition to the memory optimized technique described
above, we propose another approach to reduce the mem-
ory usage for the better accumulation technique used in
the IND-CPA key generation protocol of Kyber, which uti-
lizes a temporary 32-bit array with 256 entries to store
the intermediate accumulation result of the vector inner
product. We observe that in the IND-CPA key generation
protocol, the memory space reserved for the 32-bit tempo-
rary array and polynomial pkp can be merged, where pkp
is a temporary polynomial in the key generation protocol.
We introduce a new data structure called poly_double that can
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hold 512 16-bit coefficients, which has the same memory
footprint as the temporary 32-bit array. By leveraging data
type conversion, we can re-purpose the memory allocated for
the temporary array to store pkp, reducing its memory usage
by 0.5KiB in the key generation protocol.

Together, these two memory optimizations improve the
feasibility of the speed-version implementation on memory-
constrained IoT devices significantly, such as the selected
16KiB SiFive board. Notably, while the second approach only
applies to the KEM key generation protocol, the first technique
can be applied to all three KEM protocols of Kyber.

C. Extensibility and Security

Although this paper primarily focuses on the efficient
implementations of Kyber on Cortex-M3 and RISC-V, the
Plantard arithmetic with enlarged input range, as described
in Algorithm 3, is not limited to Kyber. The proposed Plan-
tard arithmetic can be applied to other LBC schemes with
16-bit odd moduli, e.g., NewHope [9] and NTTRU [34] etc..
The optimization techniques proposed in Section IV provide
several solutions for the efficient implementation of Plantard
arithmetic. These techniques are able to extend to other 32-bit
platforms that share similar instruction sets, making it possible
to supersede the Montgomery and Barrett arithmetic by the
Plantard arithmetic and further speed up LBC. Besides, most
of the optimizations for NTT/INTT can be extended to other
LBC schemes with 16-bit NTT, with the exception that the
lazy reduction strategy may need to redesign. This is because
the Plantard arithmetic may have different input ranges for
different moduli used in other LBC schemes. Last but not least,
the memory optimizations proposed for the speed-version
Kyber implementation can also be extended to other low-end
IoT platforms with similar memory constraints.

However, the proposed optimizations cannot be directly
applied to the 32-bit NTT in Dilithium on 32-bit platforms.
The Plantard arithmetic for 32-bit modulus would require
computing 32 x 64-bit multiplication, which must be separately
computed with at least two instructions on 32-bit platforms and
thus wipe out the gains of the Plantard arithmetic. However,
we believe our optimizations could be applied to Dilithium on
64-bit platforms that can efficiently implement the 32 x 64-bit
multiplication. Moreover, recent research [14] shows that the
computation of cs; in Dilithium can be implemented with
16-bit NTT. Therefore, the proposed optimizations are also
applicable to these operations on 32-bit platforms.

In order to resist side-channel attack, our implementation
avoids the use of non-constant-time instructions on Cortex-M3.
Additionally, we ensure that all the secret-related operations in
our implementation are constant-time on both platforms, and
our implementation does not leak more sensitive information
compared to the reference work, making it secure against
simple power analysis and timing side-channel attacks.

VI. RESULTS AND COMPARISONS

This section presents and discusses the experimental results
of Kyber on the ARM Cortex-M3 and two RISC-V plat-
forms: the SiFive Freedom E310 board and PQRISCV. All
the results on the same platform are obtained under the same
environment.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

A. Experimental Setup

1) Cortex-M3 Setup: For the Cortex-M3 platform, we uti-
lize the ATSAM3 x 8E microcontroller on an Due and Core
board [27] as the testbed. Our implementation is based on
the PQM3 repository [33], and the GCC v10.2.1 is used
to compile the code. We leverage the hardware random
number generators available on Cortex-M3 to obtain the
necessary random numbers for the Kyber implementation.
Stack usage is measured following the methodology outlined
in [33]. Additionally, SHA3 and SHAKE are implemented
using the optimized assembly Keccak permutation token from
the eXtended Keccak Code Package (XKCP).?

2) RISC-V Setup: The realistic RISC-V platform we choose
is the SiFive Freedom E310 board, which is equipped with
a 32-bit E31 RISC-V core [29]. Due to its limited 16KiB
memory, a direct deployment of Kyber on this platform is
infeasible. Hence, in order to provide detailed comparisons
with the existing Kyber implementation on RISC-V, we also
present experimental results obtained from the RISC-V sim-
ulator used in PQRISCV [35], which uses a RISC-V CPU
implemented in pqriscv-vexriscv® as the PQC benchmarking
platform. The GCC compiler we used for RISC-V is the
RISC-V GNU v10.2.0. Since both of the RISC-V platforms
do not have hardware random number generators, we reuse
the function in PQRISCV [35] to generate the random num-
bers in Kyber. Furthermore, for the implementation of SHA3
and SHAKE, we rely on the optimized Keccak permutation
provided by Stoffelen [36] in PQRISCV.

To support the Kyber-90s variants, we adopt the optimized
AES implementation presented in [37] on Cortex-M3 and
PQRISCYV similar to the PQM3 [33]. On the SiFive platform,
however, we use the reference SHA3, SHAKE, and AES
implementations provided in SUPERCOP’ to reduce the code
size. This is because a bloated code size might impact the
performance of the platform. Further discussion on this issue
will be provided in Section VI-C.

B. Performance of the Polynomial Arithmetic

Table I presents the performance comparison of the poly-
nomial arithmetic. The state-of-the-art Kyber implementation
on Cortex-M3 was presented by Greconici et al. [13],
which is also the latest implementation integrated in PQM3
[33]. On RISC-V, the closest related work also comes
from Greconici [32]. However, since the implementations on
RISC-V [32] do not involve any memory optimization tech-
niques, we are unable to deploy their Kyber implementation
on the SiFive platform. Instead, we only incorporate their
NTT and INTT implementations on the SiFive platform for
comparison.

As mentioned in Section V-A.3, we eliminate the mod-
ular reduction of coefficients for NTT, therefore, both the
stack-version and speed-version NTT cost the same number
of cycles. Specifically, the proposed NTT implementation
obtains speedups of 26.19%, 34.76%, and 22.67% on the ARM
Cortex-M3, SiFive Freedom E310, and PQRISCV, respec-
tively, compared to the implementations in [13] and [32].

Shitps://github.com/XKCP/XKCP
6https://github.com/mupq/pqriscv—vexriscv
7http://bench.cr.yp.to/supercop.html
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TABLE I

CYCLE COUNTS OF THE CORE POLYNOMIAL ARITHMETIC, NAMELY NTT, INTT AND BASE MULTIPLICATION,
IN KYBER ON CORTEX-M3, SIFIVE FREEDOM E310, AND PQRISCV

Platform Implementation NTT INTT Base Multiplication
Denisa et al. [13] 10874 13049 4821
This work (stack) 8026 8594/8 799 4311
This work (speed) 8026 8594 3028/3922/5851
Cortex-M3 Speedup (stack) | 26.19% | 34.14%/32.57% 1.06%
Speedup (speed) 26.19% 34.14% 37.19%/18.65%/-21.37%
Denisa et al. [32] 24353 36513 -
This work (stack) 15888 15719/16227 10020
This work (speed) 15888 15719 4893/5662/9313
SiFive Freedom E310 |  Speedup (stack) | 34.76% | 56.95%/55.53% -
Speedup (speed) 34.76% 56.95% -
Denisa et al. [32] 28417 42636 -4
This work (stack) 21975 23666/24 146 12236
This work (speed) 21975 23 666 7747/9795/13 068
PQRISCV Speedup (stack) | 22.67% | 44.49%/43.37% -
Speedup (speed) 22.67% 44.49%

a. [32] did not provide results for base multiplication.

In terms of INTT, because we manage to eliminate the
modular reduction of coefficients in the stack-version INTT
of Kyber512 and the speed-version INTT of all three Kyber
variants, the INTT of Kyber512 is slightly faster than the one
in the stack-version INTT of Kybe768 and Kyber1024. Over-
all, our INTT achieve speedups of 32.57%/34.14%,55.53%/
56.95%, and 43.36%/44.49% on the ARM Cortex-M3, SiFive
Freedom E310, and PQRISCYV, respectively, compared to the
implementations in [13] and [32].

Huang et al. [20] reported that the stack-version base
multiplication with the Plantard arithmetic is slower than
the previous Montgomery-based counterpart on Cortex-M4
due to the lack of register usage resulting from the Plantard
multiplication of two variables. However, on Cortex-M3 and
RISC-V platforms, the stack-version base multiplication does
not have this issue thus could even benefit from the Plantard
multiplication by the twiddle factor. The speed-version imple-
mentation offers three variants of base multiplication to deploy
the asymmetric multiplication and better accumulation tech-
niques described in Section V-B.1, which help to mitigate the
need of some modular reductions. Therefore, two of the three
variants are 29.74% and 9.02% faster than our stack-version
base multiplication, while the third variant is 35.72% slower,
mainly due to additional loading cycles and high register
pressure. Compared to the state-of-the-art Montgomery-based
implementation in [13], these two variants of the speed-version
base multiplications are 37.19% and 18.65% faster than the
base multiplication due to the use of the improved Plantard
arithmetic, asymmetric multiplication and better accumulation
techniques. Since the implementation from Greconici [32] did
not provide results for the base multiplication, we do not
compare it with our results on the RISC-V platforms. Overall,
the speed-version implementation offers faster INTT and base
multiplications for all variants of Kyber than the stack-version.
It should be noted that the slower variant of base multiplication
will only be used at the final stage of the innver-vector product
and matrix-vector product while the two faster variants will
be used repeatedly in these two operations. Therefore, the
faster INTT and base multiplications would speed up these
two time-consuming operations. Together with the proposed
memory optimizations in Section V-B.2, the speed-version
implementation provides an effective time-memory trade-
off for Kyber on low-end 32-bit platforms. Detailed

improvements of the speed-version implementation could be
found in Table II.

C. Performance and Stack Usage of Kyber

Table II presents the cycle counts of the KEM protocols
for Kyber and Kyber-90s, including key generation (KeyGen),
encapsulation (Encaps), and decapsulation (Decaps), which are
obtained by repeating each protocol one hundred times and
then computing the average results. The stack usage is mea-
sured in a similar way to [32] and [33]. We have implemented
the stack-version and speed-version of Kyber on Cortex-M3
and RISC-V platforms similar to the optimized implementa-
tion on Cortex-M4 [14]. Our stack-version implementation on
Cortex-M3 offers speedups of 3.38%~5.14%, 2.75%~4.26%,
and 2.43%~3.69% compared to [13] for Kyber512, Kyber768,
and Kyber1024, respectively, while having the same stack
usage as theirs. Similarly, our speed-version implementa-
tion on Cortex-M3 outperforms the work in [13] with a
speedup of 3.69%~5.63%, 3.51%~5.15%, and 3.37%~4.67%
for Kyber512, Kyber768, and Kyber1024, respectively, with
1.31~1.68 times stack usage compared to their implementa-
tion. Notably, thanks to the proposed memory optimizations
in V-B.2, our speed-version Kyber implementation on Cortex-
M3 reduces the stack usage by 23.50%~28.31% compared to
its counterpart on Cortex-M4 [14, Table 4].

To the best of our knowledge, there exists only one
Kyber implementation on RISC-V (cf. Greconici [32]).
They have provided optimized assembly implementation
for NTT/INTT of Kyber and leave rooms for further
exploration to optimize memory footprints using memory
optimized techniques. Table II shows that their implemen-
tation has a stack usage that is 2.71~5.94 times larger
than our stack-version implementation on PQRISCV. Notably,
our stack-version implementation achieves a speedup of
13.10%~26.47%, 24.46%~30.05%, and 25.80%~30.25% for
the three variants of Kyber, respectively, compared to their
implementation. Moreover, our speed-version implementation
outperforms theirs by 13.59%~27.03%, 25.49%~31.15%, and
26.96%~31.43% using only 26.86%~52.44% of their stack
usage for the three variants of Kyber, respectively. It can
be deduced that the large speedups of our implementations
compared to [32] mainly stems from the fact that their
implementation is not as optimized and does not incorporate
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TABLE I

CYCLE COUNTS (CC) AND STACK USAGE (BYTES) OF KEYGEN, ENCAPS, AND DECAPS ON CORTEX-M3, SIFIVE FREEDOM E310, AND PQRISCV. THE
FIRST ROW OF EACH ENTRY INDICATES THE CYCLE COUNT AND THE SECOND ROW REFERS TO STACK USAGE

Platform Implementation Kyber512 Kyber768 Kyber1024
KeyGen | Encaps | Decaps | KeyGen | Encaps Decaps | KeyGen | Encaps Decaps
Denisa of al[13] 541K 650k 622k 378k 1054k | 1010k | 1388k | 1602k | 1543k
: 2212 2300 | 2308 3084 2772 2788 3596 3284 3300
) 510K 678K 590k S4aK T025k | 967k 1342k | 1563k | 1486k
Cortex-M3 This work (stack) | 5515 | 2300 | 2308 | 3084 | 2772 | 2788 | 359 | 3284 | 3300
This work (speed) | 51K 626k 587k 842k 1017k 958k 1333k | 1548k | 1471k
3268 3860 | 3860 4044 4636 4636 4812 5404 5404
Denisa et al(32] | 222K | 2927k | 2856k | 4166k | 5071k | 4957k | 6696k | 7809 | 7662k
: 6544 9200 | 9984 | 10640 | 13808 | 14944 | 15760 | 19440 | 21056
. 1937k | 2355k | 2100k | 3147k | 3822k | 3467k | 4964k | 5794k | 5344k
PQRISCV This work (stack) | 458" | 2488 | 2520 | 2952 | 3016 | 3032 | 3464 | 3528 | 3544
This work (speed) | 020K | 2339k | 2084k [T3T04k | 3768k | 3413k | 4890k | 5704k | 5254k
3432 4024 | 4040 4216 4808 4840 5032 5608 5656
This work (stack) | 497k | 1812k [ TGOIk | 2413k | 2920k | 2635k | 3794k | 4435k | 4045k
SiFive Freedom E310 2580 2660 | 2708 3060 3124 3156 3572 3636 3668
This work (speed) | 307K | 1903k [ T674k [ 2737k [ 3203k | 2919k - . -
3620 4212 | 4244 4340 4932 4964 . . .
Platform Implementation Kyber512-90s Kyber768-90s Kyber1024-90s
KeyGen | Encaps | Decaps | KeyGen | Encaps Decaps | KeyGen | Encaps Decaps
Denisa of al[13] 467k 527k 558k 782K 868k 909k 1224k | 1332k | 1383k
: 2904 2992 | 3000 3432 3504 3512 4636 4000 4016
) J45K 505k 526k 748K 839Kk 865Kk TT78k | 1293k | 1326k
Cortex-M3 This work (stack) | g5 2992 | 3000 3432 3504 3512 4636 4000 4016
This work (speed) | 2K 302K 523k 741K 328k 854K TT70k | 1274k | 1306k
4000 4592 | 4592 4776 5368 5368 5544 6136 6136
Denisa et al(32] | 3042k | 3491k [ 3627k | 6106k | 6677k | 6854k | 10246k | 10953k | I1I8Ik
f : 6656 9312 | 10096 | 10752 | 13920 | 15056 | 15872 | 19552 | 21168
) 2667k | 2902k | 2854k | 5,126k | 5434k | 5,370k | 8578k | 8983k | SO08K
PQRISCV This work (stack) | “y704" | 2616 | 2648 | 3248 | 3144 | 3160 | 3760 | 3656 | 3672
This work (speed) | 2039 | 2836k | 2788k [ 508k | 5379k | 5304k | 8490k | 8888k | 8813k
3744 4216 | 4232 4528 5000 5032 5296 5752 5800
This work (stack) | 5320k | 8619k | 888K | TT443k | 11758k | 12061k N - N
. 2780 2860 | 2908 3292 3356 3388 y . y
SiFive Freedom E310 333K 3757k 0046k - — - - — -
This work (speed) 3820 4412 4444 ] ~ ] ] ~ ]

the recent optimization strategies described in the recent
literature [11], [12], [14].

The extremely large stack usage of Greconici implemen-
tation [32] makes it infeasible to deploy on the 16KiB
SiFive board. Hence, we only provide results for the pro-
posed optimized implementations on this platform. Our results
demonstrate that with the memory optimization strategies
proposed in Section V-B.2, it is possible to deploy the
speed-version of Kyber512 and Kyber768 on the selected
SiFive board. Notably, these two variants of Kyber are unable
to be deployed on this platform before using our memory opti-
mizations. However, since the speed-version implementation
has a larger code size than the stack-version, for example,
13.75KiB versus 12.44KiB for Kyber512, it is slower than
the stack-version on the SiFive board. This can be attributed
to the fact that the larger code size of the speed-version
implementation spills more instructions into the ROM, leading
to much slower performance compared to the stack-version,
as stated in [38, Section 5.3]. However, as demonstrated
in our Cortex-M3 and PQRISCV results, the speed-version
implementation can still outperform the stack-version on
different platforms with different characteristics. Although
the performance of the speed-version implementation on the
SiFive board is slower than the stack-version, we show the
feasibility of deploying both stack-version and speed-version
Kyber implementations on memory-constrained IoT devices,
except for the speed-version of Kyber1024. This is made

possible by the memory optimized strategies proposed in
Section V-B.2.

As for the Kyber-90s variants, we yeild 2.93% ~ 6.27%
speed-ups on Cortex-M3 and 12.33% ~ 23.13% speed-ups on
PQRISCV. The speed improvements are very similar to the
Kyber variants on Cortex-M3 and PQRISCV. On the SiFive
platform, the adoption of the reference AES implementation
results in the Kyber-90s variants being over 3x slower than
the Kyber variants. We did not utilize the optimized AES
implementation in [37] because it would increase the code
size, leading to slower performance. Additionally, the refer-
ence AES implementation introduces additional stack usage,
posing challenges on the deployment of the speed-version
of Kyber768-90s and both versions of Kyber1024-90s on
the selected memory-constrained SiFive platforms. Therefore,
we are unable to provide their results on the SiFive platform.
Addressing these deployment issues for Kyber-90s will require
additional efforts and optimizations. However, we believe that
if the target platforms have AES hardware support, the Kyber-
90s variants will remain a promising option on these platforms.

VII. CONCLUSION

This paper presents faster implementations of Kyber on
low-end 32-bit IoT devices, specifically for ARM Cortex-M3
and RISC-V. In particular, we prove that the input range of
the Plantard arithmetic can be further enlarged. The enlarged
Plantard arithmetic could also be tailored for Kyber’s modulus.
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Leveraging this theoretical foundation, we present efficient
implementations of the Plantard arithmetic on the aforemen-
tioned devices by exploiting their specific ISA characteristics.
We then propose various optimized strategies to improve the
efficiency of NTT/INTT. Furthermore, two memory optimized
techniques are introduced for the speed-version Kyber imple-
mentation, making it more feasible on low-end IoT devices.
Overall, we achieve new speed records for Kyber on these
low-end 32-bit platforms.
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